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I. INTRODUCTION ..
We present the results of an extensive investigation of the electrical .. 1*

characteristics of the concentric spherical cavity. Although this system

possesses a very simple geometry, to date, an analysis of this cavity has

a shrt nte y Brc.1Broc's work cofnditself to determining the Qo
silvr-wlle cocenriccavity at a fixed frequency for each of two low order
moe.Ti nt sfrfrom a complete solution of the concentric spherical

caviy poble. Sncethis cavity serves as the starting point for the solu-
tion of a number of imprtant practical electromagnetic polm, especially
fullynidre i n asymptotic limit or another, it was necessary to care-

fuly eamie i initssimplest form. The results obtained in the initial
stages of this study are rather interesting in themselves, since they give
insight into electrical characteristics of many problems of a considerably
more complex nature. Indeed, a series of subsequent reports will elaborate on
a number of such important practical problems, ranging from coupling phenomena
to antenna properties. *N

At the outset a bookkeeping problem presents itself. To deal with this
situation, the results of our investigations will be discussed in a number of
reports. Each report will be sufficiently restricted both in size and subject
to render the whole manageable while at the same time retaining coherent

*meaning and connectivity of one to the others. 4r I,

This particular report in the sequence, Part I, considers the geometric
characteristics of the concentric spherical system. The formal vector field
solution appropriate for the system appears in Part II. Part III contains the
formal analysis for the eigenvalue solution for this boundary value problem,
and Part IV gives the numerical solutions obtained for the eigenvalues and
plots of their trajectories, along with a discussion of the results presented.

2. FOF.MAL SOLUTION FOR FIELDS WITHIN CAVITY

2.1 Basic Field Theory

We shall assume harmonic time dependence of the form exp(jwt). The
explicit fields we seek are those appropriate to the concentric spherical
cavity illustrated in figure 1. At the start we must establish some conven-
tional notation; hence, we denote the radius of the outer sphere by r - a and
the radius of the inner sphere by r - b. we shall find it convenient to
introduce a parameter, namely, the ratio of the inner to outer sphere radii,
which we denote by R = b/a. We shall restrict our considerations in this
report to the situation where there are no sources present within the cavity
(except of course on the boundary walls) and to perfectly conducting walls.
Also, we shall consider at this time only an isotropic, homogeneous, linear
dielectric medium filling the cavity. At first we assume a non-lousy
dielectric. in section 3, we shall extend our results to lossy dielectrics.

1J. Broc, BlectromagnetIsm., Academle des Sciences, 230, Comptes Rendus

'I (January 1950), 198-9.7
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Figure 1. Geometry of concentric spherical cavity.

In our present problem the Maxwell equations are

~XE = -wuH H (1) .

~X H=-+j+ wet +E-,/ %

Since is solenoidal, we have then a vector potential A such that
X(t) = ,xA(:) , (2)

which then yields

(3).

where ( ) is a scalar function. A and *(t) are connected via the relation

Ivx vx IW21 - I J jWc4e (4)

which we can write alternatively,

v21 + w2U . -3 + J( . A) + o (5) '-.

We can without loss of generality take the gauge condition

(6) %-.

8
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which then gives us the relation between the vector potential A and the cur-
rent sources J, if there are any:

(v2 + W2e)A=- . (7)

We may consider this etorpotential () as the generator of an electric and ,.

a magnetic field given by

-,F 
, %

* IrJ ju) r [ * xAI()J (8b)

H r (8b)

Now in a source-free region, such as within our concentric spherical
cavity, we have E = 0; hence, we can have, independent of the previous
fields,

E(9)

where the vector potential F gives rise to a solenoidal electric field. We
then obtain from the Maxwell equations a corresponding magnetic field,

A(r) = -jw ( ) - , (10)

where () is a scalar potential. P and T are related through

x 2J-F= -jwup'v (11)

or alternatively through

(V2 + w =~ f) + jwji~y . (12)

Again without loss of generality we can fix the gauge by

~* ~-jwiiY (13)

and obtain for the vector potential

-~(V
2 + W2izC)P 0 (14) ','

This vector potential generates an electric and a magnetic field within our
source-free cavity given by

12M[ - -• x ) (sa)

A2+ -Jwcf(+) + f() ( 15b)

9

4, 'Ci, ~ C,,. *,- *%
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Since the fields generated by A and by F are independent, we have as the total
fields in our source-free cavity the sum of the two contributions

4 x (+r)+ -LI x x A(16a)

and

S(16b)

Now we can always decompose a vector field into a component trans-
verse to the radial unit vector Ar and a component along Ar- We shall refer
to the latter as the longitudinal component. Thus, the electric field at a
point within our cavity can be formally decomposed in this fashion as follows:

E e r er e [r (17)
[] r1er • t(+]] - r x [+r x t([)]] ,)

We shall now proceed to construct the total electric and the total

magnetic fields within the cavity as superpositions of just such transverse
components and longitudinal components. This requires some arithmetic. ' -

Consider the specific vector functions

A(1r) =  rAr() F(1) e rFr(r) (18)

Note that it should not be expected that in general we can satisfy the rela-
tions .S-

er (v+) = V2([r or er ((4" =) ("r"

that is, Ar or Fr are solutions of the scalar Helmholtz equation. What we do
have, in source-free regions, is

and

I x x Wjlc -JWJI*(19b)

From these we can find the differential equations that Ar(M) and Fr(P) must
satisfy. Let us work first with I - ;rAr. Now some arithmetic exercises are
necessary.

In spherical coordinates the gradient operator, we recall, isIr + (20)

5, 10

% %"...* .N
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Then from the following identities connecting the orthogonal unit vectors in
cartesian coordinates and spherical coordinates,

ex = er sin 8 cos f + e8 cos 8 cos f - e sin * ,

ey - 4r sin e sin f + *O cos 6 sin f + A cos f, , (21a)

ez  ercos e -69 sin ,

er = x sin 0 cos + +y sin 0 sin t + + coo 0 ,

to - 4x cos 0 cos + 4 cos 0 sin -4z sin 0 , (21b) -

e# = - ex sinO + ey cos ,

we find

r Cr + aer

S- 0 C so of , (22a)4- 
=  6 , * -e~sin e

Aee gee + 3ee +
-C- = 0 , go er -f- e' cos a (22b) --".i.r!

M 0 8 0 =(er sin e + ee cos e) (22c)ar g o =0, S

In turn we find ".r(
+ 9r eer Mr ee e ; er a'r f"'i

(e rAr) = er~r + r +  + si + e Ar  ,(3
rr r r3rsi

and then

+ +
eO  M~r e 3A.

S(erAr) - 4C e a-A- -, r 30 (24)

which we note is transverse to Ar" Continuing, we determine x grAr), and
finally,

sine e sin 0 A- r ,.s n

+ e 1A. (25)ar(3

i_

r s \S / r sin e 4 \-r-

. ...

*4 .t - . - . . .. . ' . _ ., _ % , ., , . , . . ., . , ,. . .. . ,. . , , , • , . . -,

.;.,.,. _,....' ./,.'......,,..*.. ,-.- ,., ... ,..'.....-.,.....,.,,...- ..-... - ...-.-... ,.._* ,,,,-., ,,.., ., ' ,,.5,



We thus have for our choice of 1(+) substituted into equation (19a); that is,

x X(+rAr) -r WUerr) = , jO

or the more explicit relation, with k2 - 2p

.erI!- - [si e e sin e0- + k1A(r) + -+ :"rr2n. aa sin2 6 a y 2r 30 r sin @ 8

• : I ri + e a

.' -Then if we choose, as we are free to,

-wO+ 3r (27)

this, indeed, follows from equation (6); we will obtain as the differential
equation for Ar ,!. 2A 0 .. ,,:. .<,..

r[Y r2 sin s in - + r2 sin 2 e D02  "r

With the observation that .

1 32  (r 32 (Ar 2f (29)

r-3r[r r r r- )

we can conveniently rewrite equation (28) as

(V2 + k2 r(+r).v2 + 2) r =0 (30)

From equations (24) and (16b), we then conclude that Ar , the solution of the

differential equation (30), will generate a magnetic field transverse to er.
This will be referred to as the TH field solution in the following discus-

.._ sions. In precisely the same manner, we can process P(1) of equation 1o8) and
obtain

(V2 + k2 ) Fr(+)/r - 0 (31)

as the defining differential equation of the scalar function Fr(t). Also we

have as in equation (24),

•~6 2" a Fr +3Fr" ,
:x(CrFr) - e -F (32)

x (-r) r sin e 3* r 3-

"  which is transverse to Are

12
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Thus, Fr will generate an electric field within the cavity which is
transverse to r and which will be referred to as the TE field solution in "..
what follows.

Once again we change notation by defining two scalar functions r
and such that

A( ) E r(Ar/r ) =r'*(.r) (33)

and

= +(Fr/r) = .~(r (34)

The electric and magnetic fields in terms of these scalar functions are *5

=+ 4~ X + ]+X X [+*(] x (35)

and

I x * ,[[]])] , (36)

where the TM part of the fields is generated by the scalar function *(t) and
the TE part separately by *(t), and of course we have

(V2 - Y2 ) ,() -0 , (37)

and

(v2 - ] ( ) =0o , (38)

and where we choose to replace k by jy.

It is useful to write out explicitly the field components in terms
of the scalar functions (}) and #(r). We have then from equations (35) and
(36):,

Er ---) 2 2] [r*[ ]]) (39) ""

E +)' [r# (i+) + -±2 1 (r ) (,~l40)
[ " r sin e a# ,rwc, r araOe . ,

1# 3 r 1 2

Er) - 7 - r ]][",- j[,, r sin e r [,()I (1),

.C]-: -; V rl2 + a , l 4, v

Kr(+) - r# [r*[()] (42)

jw.a r 3r38[*()e r.I e [r.( .. 43

rsjn- r sin e a r r-

--- 4-.--1 1 *r(] 4)
13
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2.2 The Eigenmodes

As usual we take the scalar functions as products of radial and
angular function factors; that is,

*(+ir) =*(r)Y(e,O)(4a

and

= *()Y(O*) .(45b)

From the forms of equations (37), (38), and (45), we find that we
shall have solutions of the form

nm M = n~rJnm~cos 6) cos mO (6
(0),

-- () = *n(r)Pnm(cos e) sin mO ,.

and

n) M -n(r)Pnm(COS 0) cos mf , (47)

*O)(m ) = *n(r)Pnm(cos 0) sin mo ,

where n is a positive integer, m can run from 0 to n, and the functions Pnm V

are the familiar associated Legendre functions of the first kind.

The radial factors satisfy the differential equations

d2  [run(r)] -9 + n(n + 1)1 [run(r)] = 0 (48)

dr2 r2

and

d2  [n(r)] 2 [ n(n + [rn1) (9
-- [* r2 1)] [ a~ r 0(9

The formal fundamental solutions of equations (48) and (49) are the modified
spherical Bessel functions in(yr) and kn(yr), where the in are singular at
r -- and the kn are singular at the origin. Complete information concerning
the properties of these functions is available in the mathematics reference
literature.2

In the concentric spherical cavity, the region of interest excludes
the origin; hence, the radial factor must be a linear combination of the in
and kn functions, e.g.,

2A. Erdelyi, ed., Ch VII, Higher Transcendental Functions, California Insti-
tute of Technology, Bateman manuscript Project, II, McGraw-Hill Book Co.,
Inc., NY (1953).

14
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*n(r) = nin(Yr) + Bnkn(Yr)

where an and 8n are independent of the radius r.

Furthermore, since the fields must satisfy boundary conditions at
the cavity walls, solutions of equations (48) and (49) can exist only for
certain values of y, which we shall denote by y and shall discuss in more
detail momentarily. We then shall have solutions of the form

ande) np[Y H) PnM(cos () s (50a)

satisfying d [ =vn~Allr~mcs[tp()m*pr )snm 5b

dr2  *np Y [ 2  + nn 1 (1

and
(0) . [ (TElr]lco s ) CO5 (50b)

lonp(*- *n pLnp in.co

which satisfy

d r* rJ P (YTA + n (n* + [4(

dr2 [ np r - r 2 __' "

Onp-f #p ]Pr (Cos 0 ).o M (52a) -

- r# y~jg r 0(53)

These scalar eigenfunctions generate, in turr, vector-field eigenmodes. Thus,
we have

np. r - r Lnpm(f}] (54)

(2;9) 1 [ C, 0()]
ip. x X Lnp.(rJ (55)

(r1 nmr (56)

-- (57)

L *$ -

LI 1&1zltv'%_ ?,
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... In the above we have mad9 angther attempt to condense the notation by defining
for our vector field, V3' (-r, the convention that j = 1 implies TE modes
and j = 2 T14 modes.

The vector field eigenmodes given in equations (54) and (55) form a
complete orthogonal set for our cavity. The orthogonality is shown in appen-

dix A. Any electric field within the cavity can be expanded in this set of
eigenvectors. Thus, we may write

++ 2 roo)(+ A (j,e)+l(j,e) r (58)
.'. C rl =  [ mnpm -npm Cr npm -npm ,(5).

"-- n=1 p=1 m=O j=L

. where, integrating over the cavity volume,

np,) d-(*) i( ) •[aC J . [2i' (59a)

where6
r,(je - e ) e)

)]2  111 dT()n ( . (59b)

We have, of course, the vector relations

x X + (t) = o , (60)

X + 2 j(;) = 0 , (61)% M') () + YnpI Hnpm-)

and we have, in addition, the relations between the electric and magnetic
eigenvectors

+( _ e) + * ) (6)
%o (1 .. 0 ( (

j Y(j)] n;(2np
H .... r) (63)

Any magnetic field within the cavity similar to equation (58) can be
written as an expansion in the complete set of magnetic field eigenmodes of
equations (56) and (57). This in its turn can be written using equation (62)
as

zi*P 16
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0- - n 2 +( e)

- ~ ~ ~~ie~ npm~

e .n= 
p i M10 j si P jy )

(64)

(j,o) xnpm r

-- F- jy:J ( j
np

where the expansion coefficients are given by
. 'I,: ,o . ,'-2

B~j'g' A(~ -' fi. dT(+r H(r) HLJ'0J

[A )] -2 e (65a)

jy(j) Enpm
np

where

np - ffJ dC) •o)(+) + .)+5b4

% We can quickly obtain a useful identity using equations (59) and
(65a&b) which enables us to formally write

.(. ) .fff dT( >') I I I i. (r) 4'. r
n-i p-i m-0 3J 2

npm

.jo)r=s 0gc +, (65c)

nmp) ,J+)-f--nT(+>' ICI)

9j [ ('0)] +,r) (65d)

From these we obtain the statement of completeness
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10 '~ -' . [ n*. Mj -V r 3 F P- 7 Z F

n 2 jE r)n'. Lr'J
n=i p=i MMO j=i O'e )2

-J 
(66a)

(j,o) 2+i L~[npmJ

and

N n-i p=i m-sO j-i j(e)]2 (66b)

w(je o ) +e ++.io ,o)($ ) ++ 10(,o01 2  -= ( _ r ,
LnPm j

where I is the unit dyad. We can show that

and we therefore need conside only one set of normalization constants, which
we shall assume to be the a1nl °m. The proof is straightforward using the
vector identity

. (Ax +) x. A-A. x (68a)

and choosing

np4 r nfm r(68b)

We get upon substitution into the identity and integrating over the volume of
the concentric spherical cavity

fff dTCt)t [In - )(t) x tfx +E(,1-)C

- ff 0 dC() X I,1ji V() I x 14 )C) (68c)

- SffI dt() [I&(a', )( t ) x x to' )

Rearranging and applying Stokes theorem this becomes

ff (r) • E.n, C() -p f dtC() r( )(+) x klpjm'cavity p

walls (68d)

1(68d

d-r (f) (Jt )(t



%.'.-,

The surface integral vanished due to the vanishing of Etan on the cavity .

j walls. Then, by equation (62), we can rewrite this as

(68e)

-LY(*)] 2 jjj dT(r) 119npmj tL np 'r

from which the identity in equation (67) follows.

Weyl3 demonstrated earlier that a dyadic Green's function exists for
the geometry we are dealing with. This function is of considerable signifi-

cance. For the electric field, the dyadic Green's function GEtrlr-) ,  which

satisfies

GE(r,r') + y2GE(;,u) = - - ') , (69a)

is given by

+ n 2 -2

+L +

(69b)

io) S1 (J,,, o)] -2l
+ Y 2 ( np m J

i, I

3 s. Weyl, Uber die Randwertaufgabe der Strahurngstheorle und Asymptotische
Spektralgesetze, Z. Reine und Angewand. Math, 143 (1913), 177-202.
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AS a demonstration ye show that

+ .++ +Ifff dT(r') Er,) • x , -E') + Y2 GE(r,r') + r- r_)

conc. spher. r r

cavity ns 2], (,) +je +(j,e), t<.>-2
n=, p=1 I -o c < <g i)s<. ' ' pm () .,U

+ + 0) -21 [y2 - ( 2 ]

, n 2N,, .j e) . Js(jse)r+ (je), -,2

2 (69c)
+ [fIf d'-r(') CE(')t - r

1*'
--r)+E I 0

We note that the poles of the Green's function for the electric

field given in equation (69) are the eigenvalues or resonances of our perfect

cavity.

The magnetic field dyadic Green's function is given by

+ (,e -
%(r~r. n iI p 1I m 10 i-I1r r)[Ap

(70)

+,,o) ,()., , [A(jo] - [2 (<) 2

which satisfies

* x &~r . rC(,;') + y2aHC(,;') - - - • (7)-

Having formally discussed the vector fields for the cavity, we proceed next to

a formal discussion of the eigenvalues.

20
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2.3 The Eigenvalues

We shall discus only briefly the determination of the eigenvalues
(n) which yield the eigenfunctions *np(r)and *np(r). It is somewhat sin- .

pier to consider the T fields which involve the scalar functions np(r). At 

the cavity walls, the boundary conditions that the electric fields are requir-
ed to satisfy are

and

E#;nm"r a) 0 E;nm(r = b) (72b)

Eluation (40) then requires that we have '-

*n(a) = 0 , (73a).

and

OSn(b) = 0 (73b)

which can be satisfied if we take *n(r) in the form

#n(r) - in(yr)kn(yb) - in(yb)kn(yr) (74)

Clearly, equation (73b) is automatically satisfied. To satisfy equation a. %

(73a), we must find the roots or, equivalently, those values of y for which

in(Ya)kn(Yb) - in(Yb)kn(Ya) = 0 (75)

In section 2.4 we shall go into great detail concerning the analytic

procedure for solving this eigenvalue problem. We shall see at that time that

there is a discrete, ordered infinite set of roots for each order n. These

roots, which we denote by y - ynp for p = 1, 2, .. e, lie along the positive

imaginary axis in the complex y-plane. For each of these values we obtain a

radial factor; i.e.,

*np(r)- in(Jy(1 ))kn(jy(1)b)- in(jynp b)kn(jy(l)r) . (76)

The functions given in equation (76) used in equation (52) will
generate the corresponding TE vector eigenmode fields from equations (40)
through (44). I

For the Th modes, we need to determine the eigenfunctions *np(r)
which satisfy the boundary conditions given in equation (72). From equat ons
(41) and (46) we find we must have
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S [r~np(r) = 0
t a (77a)

at r  a

r*np(r) = 0 (T

at r b 

These requirements can be met if we take *n(r) of the form

*n(r) = in(yr)[ybkn(yb)] - kn(yr)[ybin(b) ] ' , (78)

where [XZn(X) I' means differentiate with respect to the variable X. We
observe that equation (77a) is automatically satisfied. Equation (77a) re-
quires that we have

[Yain (ya)]'[ybn (yb)]' - [yakn(ya)]'[ bin(yb)]' - 0 (79)

We shall see in the following section that this relation will be satisfied 4-

only for an ordered infinite discrete set of values y - y(2 ) for p = 1, 2,
... , for each order n. The physically meaningful roots lie alon? Jhe positive
imaginary axis, just as for the TE case. Each such eigenvalue ynp gives rise
to a radial factor function, i.e.,

( 1.2)r (2) n(2)) ']
#np(r) =- in kJYnp)ly[ rnp b • n, 

(80)
(2)r[Y( 1(2)b)]

Functions given in equation (80) used in equations (50) generate the corre-
sponding TH vector eigenmode fields from equations (39) through (41) and (43)
and (44).

Next, we briefly discuss the effect of a lossy dielectric on these

eigenvalues and on the corresponding vector eigenmodes.

2.4 Effect of Lossy Dielectric on Eigenvalues and Eigenmodes

By allowing the dielectric to have a finite, isotropic, homogeneous, ',
frequency independent, linear conductivity, we can account for the effects of
a lossy dielectric filling the concentric srherical cavity. We now have

- t) -oCt) •(i
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The Faraday's Law and Ampere's Law equations can now be written 1%

x E r a t (82a)

~~~ ~~ + (,)"''-
x H(r,t) Or, + C (82b)

from which we obtain the relation

32+ + o 0*(3
ECrt) at(',,t) + :::
at2  at +r X Vr x (r,t) 0 (83)

Since we have the same boundary conditions for t(P,t) to satisfy, w
can expand it in the same complete orthogonal set of electric eigenvectors .-
given in equations (54) and (55). Equation (83), then, is equivalent to

n 2 + 2(',t) r
I m=1 M 0 j=1 at2

+ (Q 1 io)(;,) e)(riO + ) + + + . )

pm ( jn r) 440r r + allff dT(+r') 3k',t)

[l(j,e)1 2  t(jo)) 2  a t

npm n)m J

If e dt hroghwith, say, ,)()and integrate with respect to over <3

the cavity, this reduces to -"

a t2
+ m, kj fff dr( ) (+,t) + fnpmf )) (84) ?-

- [vo, n1) k..

where Yois the zero-conductivity value. -
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Assuming time dependence of the form ej Wt, where

W = W, + jw 2  ' (85)

we can solve for the real and imaginary parts of the frequency. Equation (84)
then becomes

JJW 2 - jol.w + =vlJ) J2 0 (86)

where

YO~np = ~npVPC (87)

and wo,np is the eigenfrequency for a = 0:

C 2+ j
_np 

=  0onp (88)

Adopting the conventional notation for the quality factor Q of thesystem, we define for the complex eigenfrequency, when o 0:

W0, npC '

Qdiel,np a • (89) -"

Then we rewrite the eigenfrequency for a simple lossy dielectric
filling the cavity as

np np + j o,np (90)
(2Qdiel,np)2  2Qdiel,np

The imaginary part of the eigenfrequencies introduces a constant uniform
damping factor over the entire cavity volume, namely exp(-at/2E), independent
of frequency. This same damping is applied to every vector eigenmode. As the
conductivity of the dielectric increases from zero we note that not only does
the damping factor become stronger, but the frequency of oscillation decreases
for each eigenmode until it eventually becomes zero at a = 2Ew for the n,
path mode. 

o, np

,9..

The trajectory can be quite readily established for the eigenvalues
Wnp in the complex plane as the conductivity increases from zero. Multiply
equation (90) by J/wo,np to get

-, p

J onp (2Qtielnp)2  2Qiel,np (91)
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Define _ _.

2Qdiel, np -2

and we can write equation (91) as

p Wo,n - o,p,

V'// ""2
j -(ip j f~ = ji- I . (92)
L\wo, np/ \"o,np/J wO, n/

wFrom this relation we conclude that each eigenfrequency starts out on

the positive imaginary axis at zero conductivity. As the conductivity in- ';
creases, each eigenfrequency moves along a quadrant of its own circle in the '"
complex plane with its center at the origin. At a = 2 E o,np, the eigenvalue
reaches the negative real axis and all oscillatory temporal behavior ceases.
All fields at this value of a merely damp out exponentially with time.

•Thus far we have considered only the effect of a simple lossy di- .

electric on the cavity modes. In a subsequent report we shall extend the
discussion to include the more realistic case of finite conductivity for the

. boundary walls.°..
the posWe now proceed to a detailed look into the method used to find the

ceigenvalues explicitly. m"oi

!i 3. ANALYTIC AND NUMERICAL DETERMINATION OF THE EIGEN VALUES .

cop3.1 General Range of the Eigenvalues

SWe shall now present detailed analyses .of the methods used to deter-
mine the numerical values of the eigenvalues (i) for a nonlossy dielectric

within the cavity. The effect of a lossy dielctric has already been dis-
, cussed. The analyses to be presented are quite tedious. Nevertheless, it is

. significant to discuss this in some depth, if only to put proper perspective
on why the concentric spherical cavity problem has only now been resolved ind i. Ineour invetgation of the igenvalue problem, we evaluated all

Wesalnwpeetdetailed anlye of ththeosusdtdtr

those y's such that ynAj )  20 for n - 1 through 4 in the TE case (j - 1) and
for n = I through 5 in the Th case (j - 2). For the nonlossy dielectric the
physically acceptable solutions for the eigenvalues lie along the positive

imaginary axis in the complex y plane. This will become evident as we proceed
through the following discussions. The eigenvalues are determined as func-
tions of R, i.e., the ratio of inner to outer radius.
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3.2 The TE Eigenvalues y ( 1 )

It is simpler to begin with the analysis for the determination of the
TE eigenvalues. We indicated earlier that for j = 1 we need to find the roots
for the functional relation in equation (75), which we repeat here:

in(ya)kn(y b ) - in(yb)kn(Ya) = 0 . "-

For convenience, we introduce the notation

jX ya , (93a)

. jy - yb =yRa =Rjx , (93b)

and hence what we seek are the values of x for each value of n such that

in(jx)kn(jRx) - in(jRx)kn(JX) = 0 (94)

equation (75) will only possess roots along the imaginary axis in complex

conjugate pairs. Only those on the positive half of this axis correspond to
physically acceptable solutions for our cavity modes.

3.2.1 The y(I(R)

For n = 1 the explicit modified spherical Bessel functions are, for
real x,

sinh(jx) + cosh(jx) x , (95)

jx) 2  j c x s Xc

k1 (jx) = e (7__Isi ./sin x cOSx (96)

x 1x x2 x\ '-

(jx) 2 + x + - 2 I " 9

Substituting these forms into equation (94) for n = I gives

sin xsin y - cosin x CosxXCosY+ siny 0
J 2 -- X- y2 y XT X ( y2 y ,

Note that the real part of the expression is identically zero. After some
algebra, we can rearrange this to

+ sin(x - y) cos(x - y) 0

or even more conveniently to

tan[(l- R)x] - (1 - R)x/[I + Rx 2 ]  f 1 (R;x) (97)
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It should be clear that our problem of determining the eigenvalues
here reduces to finding the intersections, for given R, of the rational frac-
tion f I(R;x) with the tangent function. We shall see that this will indeed be 4
the case for all orders 1r" The (nterseqtions can be uniquely ordered in
increasing value, i.e., x (R), xl,(R), x(1 (R),1,2 , 1,3 ,

We further observe that since

f1 (R;x) = (1 - R)(1 - RX2)/(I + Rx2) 2  (98a) -

fl(R;O) = (1 -R) , (98b)

we have both the tangent function and its derivative, respectively, coincident
with f1 and its derivative at the origin. We further note that f1 is never
negative and, furthermore, goes to zero asymptotically with x + -. The only
zero of fi occurs at

X0 •(99a)

Since f, starts at the origin, goes positive, and ultimately goes
to zero as x + -, equation (99a) locates the one and only maximum for f1,
where we have actually

fl(R;xo) = 1/2 - / ) = 1/2 (1 - R) (99b)

Also, we readily find for R2 > RI ,

I/R I > 1 R-2 , (100a)

f,(R,;x) (1 - Rj) (I + R2 x
2 )

fdR2,xJ" (1 - R2) (1 + R x2)

because - R2 < 1 - R, and 1 + R2x2 > I + RIX 2 . Thus, we see that as a
function of R for fixed x we have

fl(R 1,x) > 1 ( ,x) > f 1 (R3 ,x) > ... for R, < R < R3  , (100b)

and the maximum value occurs earlier for the larger value of R. We illustrate
this in figure 2. Note (1 - R) is the initial slope at the origin. We now
know all the essentials of the characteristics of the family of functions
f 1 (R;x). Let us examine the family tan(1 - R)x in some detail. For a given R
this function has singularities at

27
6P .



. i(R) (2m 1 for m = 1 2, ... (101a) ,i%-
S2 (I -(2. 1) 2 (1 - R)

and zeros at

J .. (R) = qw/(1 - R) for q = 0, 1, 2,... . (I01b)

Since

1 - 1  for R2 >R 1  ,
1 - R1 - R2

we find as usual that as R increases the singularities and poles move out
along the x-axis. This behavior is illustrated in figure 3 for x > 0. Now we
are familiar with the one-parameter family tan(I - R)x. The slope of tan(1 -

R)x is (1 - R) > 0 at x = 0 and increases with x to become infinite as

TX I ( -R)"

On the 1 - R at x = 0 and decreases as x increases to become
zero at = R. But to order x..

23
"' tan(1 -( - R~ - R)x + (1 - R)3 3

_ ". f 1(R;x) (I1 R lx -ROI - R~x3

,X

,." Figure 2. Rational fraction function f1(R;x) .
used to find n = 1 TE eigenvalues for values ..

• " .of ratio of inner to outer sphere radii R1 < .
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Figure 3. Family of tan(1 - R)x for R, < R2.

Hence, for x just greater than zero, f1 (R;x) lies below the tan(I -
R)x function. This is the relative position of the two functions as x in-
creases out to the first singularity of the tangent function. Thus, we con- LN
clude that there will be no intersection of tan(I - R)x and f1 (R;x) for x < .
71/2(0 - R); i.e., before the tangent attains its first singularity. Further-
more, the tangent function returns from - at

TO2( R)

and remains negative as x increases until x = i/1l - R). The first crossing
of f 1 (R;x) with the tangent then occurs at x > w/(1 - R). Actually, x( )(R)
will occur between x = i/(I - R) and x = 3w/2(0 - R), where the tangent is
increasing with x from zero to 4. All further crossings will occur on the
arcs of the tangent function where it is positive; i.e., xl)(R) will lie in
the range pi/(l - R) < x < (2p + I)i/2(l - R) for p = 1, 2, .... For a given
ratio R as p increases, the crossings are approximately periodic with the
period of the tangent function. The larger the values of p, the closer this
periodicity becomes. Since the tangent function essentially spreads out with
higher values of R, the successive crossings occur at larger intervals. We
have already noted that fl(R;x) flattens out as R increases. Then we conclude ,,%
that the crossings will occur closer and closer to the zeros of the tangent %

' .'p4.4.
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function with increasing R, which we have already noted are periodic in x with

increasing period as R increases. The details of the behavior of the X~1 )(R)
* ip

are rather nicely depicted in figures 4 through 12, which show the two func-
tions f l out to 20 and for 0.1 R j 0.9 in steps of 0.1. Note that, forR

* 0.9, xli (0.9) occurs beyond

1 -R

and also the tangent attains its first singular value at

~ 2(1 -R)= i=1508

(see fig. 12), which is the only singularity or zero in the range of x to
which we have restricted our interest.

R=0610 ! TE (n -1) 2 1 *T ' ~n1

. .......

12 ?--- ti a0.0 -
iA *i .40I
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Fiur 0.60eain unton o Figure 6. Generating functions for
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3.2.2 Th 1)e )(R)

The modified spherical Bessel functions for n = 2 are

3 + 3 coshljx) 3Cos x 3 1_sin x1
i2 (jx) 3- + T- sinh(jx)

(jx)2  x2  X3  x
(102)

,<2 <jx _. [ -xr + 3 ,] (.m3 cosxl

L(jx)2jx e_ . T _ sin x -J

(103)

+ j + x ( )cosx ,

which give for n = 2 in place of equation (94), upon substitution and simpli-
fication,

0=j3 cos x + 30= ( sin sin y +(; cos y

n ( 003a )

[3 cos y (3 sin [3 sinx+ 2_1 cosS
y2 y3 yX2Q ) x

We note again that the real part of the expression is identically zero. With I.

some algebraic exercising, this relation can be put in the form
1 '

-3 + sin(x - y)

)QT. 13 ) + 3x2y2 ]

- 33 ] cos(x -y) 0 (103b)

or, in turn, into the more convenient form

(1 - R)x 1 + ax
tan[(1 - R)x] - 1 2  R2x4  f2 (R;x) (104)

1 - (R 2 -3R + 1)- +

Again, as for the previous case for n - 1, we have reduced our
eigenvalue problem to determining the values of x(I )(R), which now correspond
to the intersections of the tangent function on the left-hand side of equation
(104) with the rational fraction function f2(R;x). Consider the denominator
of f2 (R;x). We immediately see that
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(a) For R > RO = (3 -/5)/2 = 0.381,966, the denominator is posi-

tive for x > 0. In turn, f2 (R;x) will be non-negative; starting at zero at
the origin, it will at first increase with x. As x + -, f 2 + 0 asymptoti-
cally.

(b) For R =R o the denominator has a double real root at

x(Ro) = xo  3/ = 2.802,517 . (105)

It then follows that f2(Ro;x) is non-negative starting at zero at x 0,
becomes infinite at xo , and also goes to zero asymptotically as x + .-

(c) For R < Ro, the denominator has two distinct real positive
roots at

xjR) = 13(R2 3R + 1)/2R2 (1 - /1 - [2R/(R2 -3R + 1)]2J1/2 ,(106a),

X+(R) = /3(R2- 3R + 1)/2R2  1 + /1 - [2R/(R2- 3R + 1)]2 , (106b)

where we should note that x_(R) < x0 < x+(R) and that as R + Ro

x+(R) - x_(R) = 2 /3(R2 - 3R + 1)/2R2 V, - [2R/(R2 - 3R + i)j
2 + 0 (107)

because the right-most factor vanishes in this limit. The function f2 (R;x)
starts out as zero at x = 0, becomes positive, and increases as x increases at V
first. f2 + c as x + x. It is negative between x and x+. As x increases
from x-, f2 returns from -a, then again goes to -a as x + x+. For x > x+, f2
returns from 4- to eventually go asymptotically to zero as x + -. For x > x+,

f2 > 0.

One further consideration is the case for R << 1. Here we find x-
n and x+ - '/R >> 1.

We have thus located all the zeros and singularities of f2 (R;x).
Additional information can be obtained from f2(R;x), which is

f(R;x) ={1 + (R2 + 1)(x2/3) - R(R 2 + 1)(x2/3)2 - R3(x2/3)3}

T R {1 - (R2 - 3R + 1)(x2/3) + R2 (x2 /3)2}2  • (108)

Note that the denominator is never negative. For case (a), the denominator
has no real roots. Upon simple test, the numerator which is a cubic in x2

reveals that it can have at most one real positive root for x2 . Since the
function f2 initially has a positive slope near x - 0 and a negative slope for
large x, we conclude that there is one and only one real positive root for

V.w

33

%* %

%.%'

, .. ... ,... .. ... .. .. -. .. ..... ...;:..,,....:... ...... :..: -.:- , -,.. .. ...::.: ..: .:..... ..., ...... , .



fj(R;x) in case (a). Thus, for case (a), i.e., R > Ro, we see that f2 (R;x)
behaves essentially like f1 (R;x), which we examined earlier. Now in case (b),'
the denominator of f2 has a double root at x - /37oj. Consider then the
numerator in equation (108). It also has only a single root which occurs at x
= V7Ko, and hence we can write

I + (R2 + 1 - R(R o + 1) - R11 R

f (R 
;x) =

> ,o X2 o1 -

[4 (R+).

j(XY R2 +R + 1X0' 0
R2 \ 2

I-R/ 1 3

We see that fj(Ro;x) is singular at x =,'37o. Also for x < xO , fj(Ro;x) > 0
and for x > xo , fj2ooX) < o. Since f I%,x) has no zeros for x * xo , it is
monotonic on either side of xo .  Next we must give further effort to examine
fj for case (c), where R < RO . Again the numerator in equation (108) has at
most a single real positive root. This must occur somewhere in the range
x < x < x+, where f has to change from positive to negative to permit f2 to
behave properly there. In figure 13 we illustrate f2(R;x) for R < Ro .

do

il 'I

{'"I

; 1(R 2 )Q + )X$i

Figure 13. Rational fraction function f2(Ro;x)
for RI < R2 < R0 .
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Next we consider the crossings of f2 (R;x) and tan(1 - R)x. In the
neighborhood of the origin, the terms to order x5 of the series expansions of
these functions are given by

3 4 5

and

tan( R)x (1 - R)x + (1 - R) 3 - + (1 - R)5x53 45

Subtracting coefficients of the x5 terms, we find for R < I that the differ-
ence is

.%

6 (1 - R) 5 - (11 - R) 5 - R(1 - R)[R 2 + (1 -R)]
45 45

(1 - R)5  1
= 45 + 1 R(1 - R)[R 2 + (1 - R)I > 0

We conclude then that f2 lies below the tangent function in the neighborhood
of x = 0. For case (a), R > Ro, the story is essentially that for the TE, n =
1 case. In case (b), where R = Ro we have

f 2 (Ro;x) = (1 - Ro)x(, + -!0 x2)2

The first singularity of the tangent is at x = w/2(1 - RO) .
2.541,602, which occurs before xo(Ro) = 2.802,517. The tangent, after x
increases beyond this first singularity, is negative out to w/(1 - Ro) -

5.083,203. Thereafter, it becomes positive and increases with x. Then in
case (b), the first crossing occurs after x = w/(' - Ro), where f2 (R;x) is
decreasing from 4- and the tangent is increasing from zero to its next sinqu-
lar value at 3w/2(1 - Ro). This is illustrated in figure 14. The successive
crossings will occur on the suqcssive positive-going arcs of the tangent .
curve. The higher order ones, xQ)(Ro), will occur at close to the period of
the tangent curve.

Finally, we have a look at case (c), where R < Ro . Again, f2(R;x)
and tan(i - R)x coincide and have the same derivatives at the origin. In the
neighborhood of x - 0. we showed that tan (0 - R)x sits above f2(R;x) and both
functions are positive and increasing monotonically until they become singular
at their respective singular points. Let us compare the series expansions of
the two functions:

1 d6

tan(O - R)x 1 1 + (0 - R) 2 x2 + E (I - R) 4 x4  (109.)I - Rdx9
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and

SRdx f2(R;x) 1 (1 -R) 2 X2 + i(1 -R) 4 -R[R 2  (1 -R)j}X 4

(109b)

From these we observe that the tangent is increasing faster than f 2 and hence
will continue to lie above f2 until it reaches its first singular point,
w/2(l - R). It will then go negative and there will be no intersection out to
x = x_(R). Over this range of x, f2 (R;x) is positive and increasing until it
goes to 4- at x_(R). For those values of R 4 Ro , such that x+(R) < 3w/2(l -
R) there will be no intersection for x J x+(R). The first intersection

x21 )(R) will occur just before x = 3w/2(1 - R), where both f2 and tan(1 -
R)x are positive. Consecutive crossings x2)(R) will then occur on the posi-
tive-going arcs of the tangent curve with almost the periodicity of the tan-
gent function itself. (Fig. 17, shown later, is a good illustration of this
behavior.) For larger values of R < R, when x+(R) occurs for x > 3w/2(1 -
R), the first crossing xl)(R) will occur on the negative arc of the first
branch of the tangent after its second singularity. Successive crossings will
occur on successive negative arcs of the tangent out to x+(R), since f2 (R;x)
is negative between xJR) and x+(R). Thereafter the curves will intersect on
the positive-going branches of the tangent curve with nearly the periodicity
of the tangent function. These intersections spread apart with increasing R,as is clearly illustrated in figures 15 and 16.

J I 
5'e

Xx 0

X 2 1/2( l -R o 3 ,r/ 2 ( I R , )

Figure 14. First crossing of f2(Ro;X) and Ii.
tan.5 - So)x at X(So

otoFiguresof15tthrough 24 showIthe detailso of the f2(R;x), tan(1 R)x .
andtheloctio oftheeigenvalues x2, fr) xS 20 for R - 0.05 and for

and5

0.1 S R 1 0.9 in steps of 0.1. Although these illustrations only cover casesi -'
(a) and (c), the above discussions serve to round out the entire picture for .-
determining the T, n -2, eigenvalues. 

".
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25.00 R-.5 TE(n-2) 150.00 R=010 aTE (n=2)

-25.0 0.Z~ 2.5 5.07.10.0 100"000 2

MO -500 50(2 -w

U..

z-50I00n L 0., " " ' - -"+ I

___ - ___ I Ii
(9 /I i J t v--4 I i-

0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 2000 0 .50 500 750 10.00 125015.00 17.50 20.00
Ix x

Figure 15. Generating functions for Figure 16. Generating functions for
(1)with RI = 0.5 0

tR = 0.0.with R 0.0.

150.00, R="22 TE (n=2) 4.00 I-W U R=0; ,-TE n"
0 ~ 100.00- 5z

. .3.o]i~ oft

)5.00- -~-ZI
= ~~U.- I_ _

a I I I

-100.00----

% , ' I - I " N

"0. 2.50 5.00 7.50 10.00 12.50 1500 17.50 0.00

x

Figure 17. Generating functions for Figure 18. Generating functions for

( with R 0.20. ) with R = 0.30.

with i..
120 A 0.R-.0F 60E~-

-: ~ im--~ - _ -. "-,Q,..c _

z a...' .-

OV W M I 1.OD12 AW17 MW0.2M5.00 7.5M00 12.5015S00 17.50 20.00
x x

Figure 19. Generating functions for Figure 20. Generating functions for
y (1) with R =0.40. (1) with R =0.50.
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1.00 T0.50 . - -- -

RI T I -TE(n=2

z OL0 O ...

.6 , * , 0- I
F, oAo , , .I iI , .

0.0

0.- 00 1. 150 17.502)00

' Figure 21. Generating functions for Figure 22. Generating functions for"-
y,() with R = 0.60. yI with R = 0.70. .

z I \I / S.

~024' I 0.07
0.16 Z 0.05 .(0

0I 0 I. ,z 0.0.

0. 2.50 50 7.50 1000 12.50 15.00 17.50 2D.00 0. 2.50 5.00 7.50 10.00 12.50 1500 17.50 2D.OD
x x

Figure 23. Generating functions for Figure 24. Generating functions for
- (1) with R = 0.80. y(I with R = 0.90.-. : "Y2p"2

4 3.2.3 The y(1 )(R)- 3p

The modified spherical Bessel functions for n = 3 are

13Jx +1 16 -15 1 cosh(jk)i3(Jx) L(j_ + (jx)2] sinh(jx) + 15(jx)3 + o

.5- 15 6 1• ." =- -j ~sin x §c s x ,v -

""(6=x+ - (110)
-Jx 15 15 + + -o15--

k3,,x e e. ."CsX+1
L(jX)4 +( -)3+ jx)2 +3X1

15~.;x sin -jr/ 15 - i o

1 k., .2."1 --L
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which give, upon substitution into equation (94), and some simplification,

0 =j 15 sin x (15 cos y + in- y
Lx4 x2 1 \x3  X) y 2 3  Y/ J

i

- 5 6 sin y Cos J , Cos x + sin.

Again we see that the real part of the expression vanishes identically. As
before, we perform some algebraic rearranging of this relation to the form

15 _6 \15 6 \ 5 1)(15i\[+ ( -.. 1 5 sin(x -y)
[x4 x2  .4 y2 3 k x y 3 Y J [x 3 ~9y y,

- cos(x - y) 0
X4 y

or again to the preferred form,

. ,5 -. " R15 -R2X2\l / 2  
15 - "[15 -R

2 x2

tan[(1 xLR)x] - R- 9 Ls -1 -/3 1 ----+5-J][ "1
r5 IL s2 2  \5 - 2R 2 / 9 9[5 2xjL 5

- 2R2x2j/t

4.-. (111)

Once again the eigenvalue problem is reduced to determining the
values x(1)(R) at which intersection of the functions tan(1 - R)x and f3 (R;x)
occur.

We can write f3 (R;x) as a ratio of two polynomials:

30(1 - R)x[75 - 5(1 - 5R + R2 )x 2 + 2R2 x4 ]f 3(R; x) -E (112)
225 - 45(2 - SR + R2)x2 - 3R(5 - 12R + 5R2 )x 4 + R3 X6

The denominator considered as a polynomial in x2 indicates that the
maximum number of positive roots is two for x2 . This in turn tells us that
there can be at most two positive real roots, x_ and x+. For small values of
R this is indeed the case. At these values x,, f3 becomes singular. Since
the numerator and denominator are positive for small x and very large x, f3
will also be positive for these ranges. Just as in the TE case where n = 2,
as R increases, x+ and x- move toward one another and at some value R = Ro we
have a single real positive double root in the denominator. Thus, we will
have a considerable amount of behavior of n - 3 that closely resembles that
for n - 2. Here we have an additional characteristic, namely a numerator in
equation (112) that can have at most two zeros for x > 0. This will somewhat
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moif te 2tyeof behavior. In figres 25 through 37 e iluirat thecharacteristics of f 3 (R~x), tan(1 R)x, and the intersect ions X31()S20.
Thus, figure 25 shows the behavior for the small value of R = 0.95. We cann
see in this illustration that f3(R = 0.05;x) has a zero x-(0.05) in the denom-
inator below x =2, and f 3 is very close to tan (1 - R)x all the way out to
about Ir/( - R).

MOR=0.05 TE n=3) 15000 R-,5----=3

Z 0.0 100.C ~7

20.00--I - 50.0 -__ 1
LA f, (0'L.. 0 .05; 1 _L

Z 0. Z-. 0.

2000 Z 50 _ 00

4000 - 00.00[

0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 1 0.025 0.50 0.75 1.00 1.25 1.50 1.75 2.o00
x x %

Figure 25. Generating functions for Figure 26. Enlarged view of generating%
(1) with R =0.05. functions for y~p (0.05) near their

first singularities.

W0 150.00
R=0.10 TE(n=4) R R0.10 TE (n=3)

Z 4000' 100.00
F I T ..

z 2000. r 0 -0

_ _ _ __.._ _0_

2.5 520.0 7.5 1001.I50 175f00 00

x 1.00 1201.40 1 AOI AD2.00 2.202.40 2.00
x

Figure 27. Generating functions for Figure 28. Enlar~ej view of generating
(1) with R =0.10. functions for y3, '(0.10) near their

first singularities.

"V0.

Figure 29. Enlarged view of

~ -080 ------------ nrating functions for
o 1 yJ(0.10) showing no

1-I2 0  -- ---- intersections just beyond first
I singularities.

2.-0 2.75 3.00 3.25 3.50 3.75 4.00 4.25 4.50
Sam x
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10U.0 TE (n 3) 150.00 TE(n 3)
CO) R=.2 ( -.~
0'100.00 100.00

z 5-
,, 50.00 .. .. .. 50--. 00Z i _ o __I, ,

Z . ii : .11

,'. o. -

z-50.00-- z- -50.00

10D.0 - 10000"0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 0 0  2. 5.00 7.50 10.00 12.50 15.00 17.50 20.00

X X

Figure 30. Generating functions for Figure 31. Generating functions for
(1) with R = 0.20. (1) with R = 0.30.

" 3 p

IIA10.00 -!'

.4.,

o.. ,.. ' I

0 IM &07.50 10.0 12.50 15.00 17.5 23.00 0. I IL..... ..
x -250 5.00 7.50 10.00 12.50 15.00 17.50 2100

Figure 32. Generating functions for Figure 33. Generating functions for
(1) with R = 0.40. (1) with R 0.50.4.' " 39 "34ihR ..0

2 .00 1 F-I - r 1.+l.00l .. - - - - l l..M(=
.00.8 go TE(n=3 R=0, TM(n

Im OW

fo ,I

IA p 0 4 0  T

OL 0.02. 50 5.00 T50 10.00 12.50 15.0 17. 2.00 0. 2.50 5,00 7.50 10.00 12.50 15.00 17M 000

Figure 34. Generating functions for Figure 35. Generating functions for
with R = 0.60. (1) with R - 0.70.
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-O.Z

0.150 R080( 025 R=OL9 (n

(030 w15 0 _ 2-)U..1

0 " Zh R0

0250 5.00 7.50 10.00 12.50 15.00 17.50 20.00 te a320 ;750 1D 12.50 15.0 17.50 MOD

Figure 36. Generating functions for Figure 37. Generating functions for
(1) R 0.80.(1) RYQ) with R~ =v.0 ithR 0..

In fact, if we expand f3(R;x) and tan1 - R)x in a series in x
about the origin, they agree exactly up to terms in x5. Figure 26 is an
expanded look at the region 0 x 2.00. We now see that f(0.05)
below tan 0.95x out to x = w/2(0.95) the first singularity of the tangent;
f3 is positive over this range. The tangent goes singular first. Shortly
thereafter, f3(0.05;x) goes singular to +- at x0.05) (between 1.65 and
1.70). The two curves fail to intersect, as can be seen in figure 25, until
the tangent is positive and going to -beyond 2ir/(l - R) = 6.613, where f 3 is
alr. positive but decreasing. It is evident that the numerator of f3, and
hence f3 itself , has a root at x just below 5.0, and f3 >0 fo = 0.05, but
is small all the way to x = 20. The succeeding intersections x3 (.05) for p
= 2, 3, and 4 occur on successive positive-going arcs of the tangentrand again
are almost periodic with the period of the tangent; ie., xth g (0.05)

o0.0o)e 3.3. Figure 27 shows the properties for R s 0.10. Now we can
just barely discern the two zeros in the numerator of f which cause fo
vanish. These zeros occur at 3 3 to

=O 6.784408 , and xO+ - 9.026174

Between these values of x, f3(0 ex) is positive. As can be seen in fiqure 27
and the enlarged views of figures 28 and 29, the first intersection u1 (0.1)
does not occur until about 6.98, which is very close to 2ff/0.9, the third zero
of the tangent in our range of x. The next three eigenvalues occur on the
negative branches of the tangent just before the tangnt passes through its
zerose Note in figure 28 just how close the two functions f 3 (0nlx) and
tan 0. 9x are to each other.

As R increases further, the two zeros of the numerator move closer
and eventually merge into a double root of f 3 (R;x). At the same time, the two
roots of the denominator move toward one another. Further increasing R causes
the numerator to become completely non-negative, as can be seen in figure 30
for R - 0.20. Between the two singularities of f 3 , the intersections occur on
the negative branches of the tangent. For R - 0. 20, we observe the first C

eigenvalue occurring before the tangent function crosses the horizontal axis
the second time. The corresponding eigenvalue is slightly higher than that
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for R = 0.10 since the tangent has been stretched out along x. After the
second singularity in f 3 is passed, the intersections occur along the posi-.
tive-going arcs of the tangent just before the tangent goes singular.

Increasing R still further causes the two singular points of
f 3 (R;x) to move further toward each other, as can be clearly seen in figures
31 and 32. In the latter case, where R = 0.40, we note that the two roots of
the denominator of f 3 (0.40) lie between the first two singularities of the
tangent; hence, the first intersection occurs beyond the higher value of x
where f3 goes singular. The eigenvalues behave now in a familiar fashion.

Further increasing R eventually causes the two singularities of f
to merge into one. Thereafter, increasing R, as can be seen in figures3"
through 37, the singularities are gone from f3 1R;x) and we again have the same
characteristics that we found for fl(R;x) and for the eigenvalues in TE, for n
= 1.

3.2.4 The y4p(R)

The last TE order we will consider explicitly (and thus only in a
limited fashion) is that for n = 4. Here we have for the pertinent modified
spherical Bessel functions,

105 45 [.105 10]i 4 (jx) = [ + l + sinh(jx) - [4 + cosh(jx)
+ (.2]

3.

sinx-~spo~cosx(113)

and

e- x r- [ s 1 105 45 10 10 ,k4 (jx) [(-jx)5  (jxV' (jx) 3 (x) -

105 0 05 45 + ](1
=Lx -  -- cos x- x x3 J -

- L) x _ L_ 10 sin x

Substituting into equation (94) we get

f/0 5  45 105 J105 450 ill x + k sin x - - _ cos ] [(105 45+ -)Cos y

115 1\105 45 (105 10) Cosy]
C°'  ';)~~~~~~~sin + r 1°L :  4 ) sin / ' 0  , ] ''

+ o.+ -1W - o ,y

S1 0 5 0 +  C o s x + J. 0 0)
45 10 sin

44I - o x (-- X2) x .
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Once more we observe that the real part vanishes identically. This can be
rearranged to

+ x y . - + - sin(x - y)

X4 ,,3  Yo x- cs (
R05 _10)'105 4 0 10\1105 45 +1)Icsx y=

[~~ y y5 IS - %+

and this in turn can be brought into the form(I _
tan[(1 - R)xJ = 105 - x2  R( 05 - 1R2 x

.k 5- 45X2 + x4 / 5 -o -45R 2 X2 + R4X4 /J

*[1 + RX2(105 -10x
2)(105 - 10R2x2)* (105 - 45X2 + x4 )(105 -45R

2 x2 + Ra.)

(115)
_=f 4 (R;x) ,

which upon simplification is a rational fraction whose numerator is a polyno-
mial of degree 7 whose denominator is a polynomial of fourth degree in x2.
The coefficients in these polynomials are of course functions (i.e., polynomi-
als) of the ratio of inner to outer spherical radii R.

For small values of R, the denominator will have four real positive
roots. If we examine figure 39 for R = 0.05 we can see the two smaller of
these which correspond to singularities of f 4 (R;x). In addition, the numera-
tor goes to zero at four real positive values of x. This occurs for R <
0.05. As R increases, the two zeros lying between the inner singularities of
f 4 (R;x) merge, and by R = 0.05 they are gone, leaving only the innermost and
outermost zeros of f 4 " The two functions f 4 (R;x) and tan(O - R)x lie ex-
tremely close to one another for x values out to the first positive zero of f4
as can be seen in figures 38 through 43. The latter of these is for R =
0.40. Figure 39 shows a magnified view in the neighborhood of the first
singularities for both functions with R = 0.05, which shows rather dramatic-
ally how close the two functions' are indeed. Fortunately, this figure also
shows f4 (0.05) lying below tan 0.95x as x increases from zero, the tangent
going singular first and the relative positions of the two functions reversing
as x increases beyondthe singularities. Then, in figure 38, we can note that
the first crossing 141 (0.05) occurs beyond x - 7.50 ust before the tangent
goes to 4-. The remaining eigenvalues for x 1 20, x p(0.05), occur one after
the other on the negative-going arcs of the tangent, as can be very plainly
seen in the figure.
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Figure 38. Generating functions foor Figure 39. Enarged view of gener-

.,,(1for,(1

y4p with R = 0.05. ating functions f y(0.05)
near their first singffarities. -
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,Figure 40. Generating functions f or Figure 43. Generating functions for
"4(1) hR 0.10. with R = 0.20.
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As R increases, the outer pairs of singularities in f4 merge into
one another, which has already taken place by the time R = 0.1. Now we fur-
ther find that f 4 (0.1gx) again has two zeros at positive values of x. This

can be seen in figures 41 and 42 for R - 0.2 and R = 0.3.

Further increase in R merely reproduces the behavior we found for
TE, n - 3. This can be readily observed by examining figures 43 through 47.

150.0 R =.50 TE(n=4) I ( =,
I .. . .

0 100.00 0- 3.20I

5.00 I I

. Z 1.6
' --- /24 -- "

Z 0.80,Ii i
LU Z Ij (/ I

-100.0- - II
00 . 2.50 5.0 7.50 0.00 12.50 15.00 17.50 20.00 0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00

Figure 44. Generating functions for Figure 45. Generating functions for
1 with R - 0.50. " with R = 0.60.

;;.. .;~

4x;zoo -1.00 g TE
R=w J]ITE(n-4)

I , o0.- \ I M

.4go.. __ Io'o ,.20-80 2I - U -

Z0A - -I - wO

0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 0. 250 5.00 7.50 10.00 120 1 110 M
X X

Figurl 46. Generating functions for Figure 47. Generating functions for
with R = 0.70. Y()with R = 0.80.

3.2.5 TZ, n > 4

Although we shall not go into any detail concerning n > 4, we can
anticipate the additional complexities that will be incurred for these higher 4
order TE mode eigenvalues. That is, additional pairs of singularities corre-
sponding to a larger number of zeros of the denominator will enter and de-
crease in number as R increases. Similar behavior will occur in the fn(R;x)
numerator. Nevertheless, fn will always pass through the origin and have the
same slope there as tan(1 - R)x. The eigenvalues will always be such that
they can be determined in the manner we have already seen from the roots of
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tan(1 - R)x = fn(R;x). Even though the formal algebraic analysis for the
higher n can be quite formidable, it can be carried through by carefully going P''-
back and forth between computer calculations and graphics and formal deriva-

' tions. In this manner all singularities and zeros of the fn(R;x) can be

located, as well as the sign and behavior of the function itself over perti-
nent ranges of R and x. And, of course, the intersection with tan(1 - R)x can
be determined definitively, and we thereby obtain the y(1)(R) values. In

np
fact, we have freely used this approach in the above considerations and in
those below for the TH eigenvalues y()(R) which we shall discuss next.

3.3 The TH Eigenvalues y 
(2 )
np

We proceed to the analysis used in determining the TM eigenvalues.

The roots of equation (79) have to be found. For convenience, we repeat the
relation here,

[yain(ya)]'[ybkn(Yb]' - [ybin(Yb)]'[yakn(Ya)] = 0 ,

and rewrite it .- ,

[ j x i n ~x ) ] ' [jy k n ( J Y ) ] ' - t j y in( J y ) ]'[ jx k n ( j x ) ]' = 0 ( 1 1 6 )

As in the TE case, due to the nature of the modified spherical Bessel func-
tions there will be roots only along the imaginary axis, and they will occur
as complex conjugate pairs. Only those along the positive half of the imagin-
ary axis will correspond to physically acceptable solutions for the modes of
our concentric spherical cavity.

3.3.1 The y(2)(R)

The derivatives that we shall need are

1+_ai7 1_ sinh(jx) cosh(jx)
[y a i l ( a =) - x ) 2 j x

L - sin x + cos 
(117)

.%.)

[yak (a)] - j  + + 1 - Cos x + sin xi'a-jx xX X2[Yk.Y fla+j lJ x) + ixJ--x ,I

+ 1 co- 1) sin x

, %
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V. Which upon substitution in equation (116) gives us after some rearranging

a-- °,

0= j- - - + + sin(x - y)

r 1
\ X21 x\ 2 J

or, equivalently,

( - R)x(1 + R2)

4 tan[(1 - R)x] = -_ g1 (R;x)

[1 - (1 - R + R2)x2 + R2x4]

Clearly this function, g1 (R;x), is of the same form as f2 (R;x) that
we found for the TE, n = 2 case. We have two zeros in the denominator and
hence two distinct singularities for g1 (R;x) for R < Ro = (3 - V5)/2 =

S.4  0.381966. These singularities occur at

-(R) 1 R + R
2  1- - R + R2  1

-2R
2  2R R

Also in this case g, is non-negative for 0 x < x_; it is negative for

x_ < x < x+ and positive thereafter, going to zero asymptotically as x becomes

infinitely large. For R = Ro, the two singularities merge into one and

gi(R o ;x) starts at zero for x = 0 and increases monotonically without bound as

x goes to the double root at x = /3 + a-/2 of the denominator. On the other

side of this double root, g1 (Ro;x) decreases monotonically from 4- to zero as

x increases. Finally, for R > R the coefficient of x in the denominator of

"gl(R;x) is positive and hence g, (R;x) is well-behaved starting at zero at the

origin, increasing smoothly to a maximum, and thereafter decreasing smoothly

to vanish at infinity, remaining non-negative all along the positive side of

the x-axis.

"."..For R < RO , the function g1 (R;x) lies above the tangent function

initially and goes singular first. Then it is negative while the tangent is

still positive and increasing. Thus, g1 (R;x) rises from - earlier than the
tangent, after x = w/2(0 - R), and still lies above the tangent curve for a
while. Since the tangent will go positive at x = w/(0 - R), the two functions
will cross before tan(1 - R)x = 0. This behavior will persist until the

OVPsecond singularity of g1 (R;x) occurs before x = w/2(1 - R). We see this in

figures 48 through 51 for R = 0.05, 0.1, 0.15, 0.20, and 0.30. In figure 52,

48.
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for R = 0.35, the second singularity occurs before ?r/20l - R) and hence the

first intersection, x(2)(0.35), now occurs while the tangent is going to its

first singularity and g, is returning from its second singularity. In figures

48 through 51, the earlier intersections occur on the negative arcs of the

tangent curve that lie between the singularities of gl(R;x). The later inter-
," sections must then lie on the positive increasing arcs of the tangent, as can

be seen in these same figures. Since the two singularities collapse into one

at R = R. for x < 1/2(1 - Ro), we can see in figures 52 through 58 that for

R > Ro intersections or eigenvalues occur on each successive positive-going

branch of the tangent curve. As R increases, the successive eigenvalues move

farther apart as tan(1 - R)x spreads out along x. In the TM, n 1 1 case, we

have included results for R at intermediate values to our more or less stan-

dard interval of 0.1 to show finer detailed behavior of the indicator function ".

gl (R;x). 
f.

150.00 R=0O5 TM(n=l) 150.00 R=0.10 ,TMO(n=1)

~100.00 .100.00

Z 50.00 z., 50.00 ---_----
U. . rall -

A'i L-A

z 0. F 9 0

J -50.00 C w-- •J -50.W .. . .I"

LU C W

100. 
i I

00. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 100. . 2.50 5.00 7.50 10.00 12.50 15.0 1750 2000
x x

Figure 48. Generating functions for Figure 49. Generating functions for

.(2) with R = 0.05. Yl) with R = 0.10.

% -.-
C50.001R=0.20 TM (n=1) 160.00 R=0.10 ITM (n-1)

z __ 0120.0:
025.00 12MO.00=1 1

z o g' (0 ja, z- 5z

"'ft0. _T? 8D.00I,.4' C, , . . . g.6+ + + ..
2.- 40.00-

: 1-75,1 -40.091 .5 5.0 E 10.00 1M.5 15.00 17.50 20.00"W

2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 X 1 2 5 7 0

X 
x

Figure 50. Generating functions for Figure 51. Generating functions for

(2. with R -0.20. Y(2) with R - 0.30.
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2-40.00 - 2.0
t! (n TM (n Ic i"

' 
"".C-0. 5 la

1 g (0.35;X) s '

.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 0. •.
p 0. X 2.50 500 7.50 10.00 12,50 15.00 17.50 MM.00

Figure 52. Generating functions for Figure 53. Generating functions for

2) with R = 0.35. y ()with R =0.40.
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0.6 
I T
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0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 -0 2.50 5.00 7,50 10.0 12.50 15.00 17.5020.00
x x

Figure 54. Generating functions for Figure 55. Generating functions for
(2) ,it R = 050 (2)

w .. with R = 0.60.
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Figure 56. Generating functions for Figure 57. Generating functions for

,,2 with R = 0.70. Y with R 0.80.
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C, R=OM9 jT(n=4)

-- - Figure 58. Generating functions for

S(2) with R = 0.90.OL40 
" "

.2 5M0 7.5 10.00 12M 50 1.50 2D'& L
x

3.3.2 The y l(R) 

We need the derivatives of the products

[_i_(a]_ x __ 6 36

[yai2(ya)y[3 + ] sinh(jx) + + 1] cosh(jx)

and

[yak2(yaf]-aj 1  -e- 3  + 6 +3"- + 1
(jx)2  jx

(121)

= - Cos x - - sin j [( -2 sin x + _isCos

Substituting these two relations into equation (116) and rearranging, we get

0 j - + 1)] sin(x - y)

-cos(x - )

6 3

or, with some further rearranging, we bring this to the desired form:
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tant( R~xJ 3x[(6 - x2)(2 R2x2) -R(6 R2x2)(2 x2)] 2Rx
tan[(1 - R)X] = 9(2 - x2)2 R2 x2) + Rx 2 (6 R2 x 2 ) (122)

(122)

We note that this function g2 (R;x) is the ratio of a fourth-degree polynomial
to a sixth-degree polynomial, just as we saw earlier for the TE, n = 3, case.
Actually, the denominator of g2(R;x) is a cubic in x

2. Thus, we can rewrite

92 as

3(1 - R)x[12 - 2(1 - R)2 X2 + R2x4 ]
g2 (R;x) = - (123) ""

36 - 18(1 - R) 2 X2 - 3R[2(1 - R) 2 + R]x 4 + R3 X6

Examining the denominator we see that the maximum number of positive roots for

x2 will be two, and in turn the maximum number of positive roots for x will be

two, x_(R) and x+(R). Now let us look at the numerator. For R = Ro
1 + /3) - Ii- + 2/3 = 0.189,591, there will be only one root for the numera-

tor at x. = x(Ro) = (i - Ro)/R O = 4.274,512. For R < Ro, the numerator will

have two roots and hence g2 will vanish at x = xo,,(R), where

%':'. I~~ - R I [2RR) ] "
xo,*(R) = R j t - [2R2/(1 - R),

and

,,-, ~Xo,-(R) < xo < Xo,+(R)•.,

Thus we see that as R increases, xo, - and x^ move together and coincide at
XO where R + RO . For R > Ro, the numerator becomes positive definite.

If we expand g2 (R;x) around x = 0 in a power series, we find that,
to order x5, g 2 (R;x) > tan(I - R)x near the origin. Of course g2 and the 4.
tangents both pass through the origin with the same slope. As x increases
from zero, g2 will have a larger slope than the tangent. For small R, the

*- function g2 (R;x) goes singular before the tangent just as in the TH, n = 1,
case. As a consequence of this behavior, g 2 (Rux) and tan(1 - R)x will not
intersect for x less than w/C0 - R). This property persists until R is suffi-
ciently large for g2 (R;x) to have no roots other than at the origin or infi-
nity; i.e., for R to exceed Ro . These characteristics can be seen in figures
59 through 62. Although explicit analysis can be carried out to determine
when and where, as a function of R, the denominator of g 2 (R;x) vanishes and,
hence, g2 becomes singular, we shall not do so here. Examination of figures

, 59 through 67 reveals quite readily that, as R increases, there are two singu-
lar values of x, 0 < x_(R) < x+(R) which move toward each other as R increases

52
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. through R 0.58 and which coalesce into one singularity at tile double root of

the denominator. By R = 0.60 this singular behavior is gone and as we see in
figures 67 through 71 we have a familiar behavior for g2(R;x). For those
values of R for which there are two singularities, g2 (R;x) is a monotonic
increasing function greater than zero and increasing with x increasing to

x(R). As x increases further, g2 (R;x) returns from - toward a maximum value
(which for R > Ro is negative) and then again goes monotonically to -= as x
increases toward x+(R). It then jumps to +- and decreases monotonically to go
asymptotically to zero as x goes to infinity. In between x_ and x+ the inter-
sections are on the positive-going arcs of the tangent for g2 > 0 and on the
negative branches for g2 < 0. For x > x+ the intersections always occur on

. the positive arcs of the tangent function and are very close to being periodic
with the period of the tangent itself. For R a 0.58, the first crossing of
the two curves, x()(R), occurs on the first positive arc of the tangent (see
fig. 67).

16.00
CR0.05 TM (n= 8 R.00 - -

d aZ
L2 8.00 -

Fi.re00.Gneain 060.00 - _f-

wi 0.10.S

0. 400.0 R0 !M 2

0.-' 100. I,-8. Z o 200

- 1.00_0.00 I I

0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 - 20.
x 0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00

X

Figure 59. Generating functions for Figure 60. Generating functions for

. (2) with R = 0.05. y(2) with R = 0.10.'2p Y2p

5-1500I50 -.0- TM 6,2 R=0.20 TM(n=2)

A~10 0 10.0 ' z. -------- t4
__ 2(0120 5X

F 0 y......%1 F 0. r
R 0.

WII w d

(01 0
Cr -100.00

4..~02.0 5007.0 1.0 1.50150017.0 000. 2.50 5.00 7.50 10.00 12.50 15.00 17.5020.00
.X x

Figurl 61. Generating functions for Figure 62. Generating functions for
1( 2' (2)

Y pwith R =0.15. 2 with R =0.20.
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Figure 63. Generating functions for Figure 64. Generating functions for
(2)(2

y 2 with R = 0.30. 2) with R 0.40.
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Figure 65. Generating functions for Figure 66. Generating functions for
• 2p with R - 0.50. y2p with R = 0.57.
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Figure 69. Generating functions for Figure 70. Generating functions for
Y. 2) with R = 0.70. y ) with R = 0.80.
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0 0.32 -

U Ix

e0.24 Figure 71. Generating functions for
U.. (2)
iCr e with/ ,eR 0.90.
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0I
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x

We note now that, unli%) the TE eigenvalues, y'')(R), which

increase with R, the TM eigenvalues Y21 CR) decrease slightly asn? increases,
and the y(2 )(R) for p > 1 decrease initially and then increase as R increases.

This was a%o true for n = 1.

3.3.3 The y )(R)

The starting point here is

:.,..'[¥i3(T)]ajx= 5 21 [45 6

[ya13 (ya 5 + sinh(jx) + cosh(jx)
aJx j j x )2 ( i x]

L (124)
_ L+ I sin x L 6 Cos
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and
4"- "

--a'.a, -jxre 45 45 21
-"[yak3(yaa~j + +-+e

"-e_ Ll x7 ljxl3  (jX)2 +  x

1 COsB + (5 -) sin +[J - )cosx

(125)

,21
( + cos(x -Y4 ,

which when substituted into equation (116) gives, after some rearranging,

450 2j 1 _ + _ 6 - sinl(x-y)
JL T x2J I Y~2 + k3 N 3  yjj

5 11L _ ± _ 6 5 45 ]cos(x -Y)

3 - x XXY 4 y

and in turn this can be put in the desired form for determining the eigen-
values from the intersections of two curves, namely,

tan(1 - R)x = 3x 15 - 2x2  - R 15 - 2R2 x
2

45 - 21x 2 
+ 

X  4 5 - 21R 2x2 + R4  /J p

(126) .

1 9Rx2 (5 - 2x2)(15 - 2R2x2  )g 3 R;x)
(45- 21 x2 x4)(45 - 21 R2 x2 +g3

We point out that the denominator of g3 (R;x) is a quartic in x2 ,
just as we observed for the polynomial denominator of f4 (R;x) in the TE, n -

4, case. Then we can anticipate a.. rapid increase in the complexity of the
extensive analysis that accompanies g3 (R;x). Only a small portion of this
analysis is included here. Thus, for the behavior near x = 0, we have

g3 (R;x) E31 - R)x [2R 3 x6 - 3R(5R2 - 9R + 5)x 4 - 45(2R2 - 5R + 2)x2 + 675]

+ [R 'x 8 
- 3R2 (7R 2 - 12R + 7)x 6 + 9(5R4 

- 30R3 + 49R2 
- 30R + 5)x 4

(127)

- 145(7R2 - 15R + 7)x 2 + 2025]
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Expanding in a power series around x = 0, we find to order x5,

1(1 - R) 3 x 3  2(1 - R) 5 x 5

3(R;X) -(1 R)x + 3 + 15

but to the same order,

(1 R)3x3  2(1 - R)5X5
tan(1 - R)x - (1 - R)x + ( + 15

Thus we see that just as in the TE, n = 3, case, both the tangent and g3 coin-
cide to order x5. This is reflected in the two curves being nearly indistin-
guishable for an appreciable range in x for the smaller values of R of figures
72 through 80. In figure 72, for R = 0.05, in fact, the two functions are
extremely close together even beyond the first singularity of g 3 (R;x) and the
first pole of tan(1 - R)x. Next, if we examine the coefficient in the denom-
inator, we observe that for small R there are at most four real positive roots
or equivalently at most four singularities in g3 (R;x) for positive x. The
same type of consideration shows that the numerator has, at most, two roots
for small R. In figure 72, for R = 0.05, we see one of the zeros of
g3(0.05;x) and also two of the singularities. For x beyond the range shown in
this figure, the pattern is repeated, but in reverse order; i.e., as x in-
creases beyond '20 we find g3(0.05;x) negative and going to --, then jumping to .
4- and decreasing as x increases, going through zero at a specific value of x
and then going to -- again as x increases further. Next, g3 jumps to +- and
then goes asymptotically to zero as x + -. As R increases, the singularities
move toward each other, with the inner pair closing together more rapidly.
This can be seen in figure 73 for R = 0.10. Further increasing R causes the
two innermost singularities to coincide and then disappear altogether. When
this occurs, g3 (R;x) has two zeros between the remaining singularities.
Figures 74 and 75 show this rather clearly. Also, we note that the outer
singularities move inward quite rapidly toward the slowly changing innermost
singularity. With further increase in R, the two roots of g 3(R;x) move to-
gether, coalesce, and then disappear altogether, as can be seen in figures 76,
77, and 78 for R - 0.40, 0.50, and 0.60, respectively. Now g 2 is less than
zero in between the singularities and positive outside. As R increases even
further, the two remaining singularities move together, coalesce, and vanish.
The final state of affairs is represented by figure 79 for R = 0.70. Further
growth in the size of R as usual results in the peak of g 3 (R;N) dropping and
shifting down in x. All the features of g3 (R;x) found here for TM, n - 3, are
now familiar properties.
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Figure 72. Generating functions for Figure 73. Generating functions for
y(2 with R = 0.05. ,,(2) with R = 0.10.3p 3p
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Figure 74. Generating functions for Figure 75. Generating functions for

"2) with R = 0.20. y"(2) with R - 0.30.
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Figure 76. Generating functions for Figure 77. Generating function. for
42) with R -0.40. yS)with R -0.50.
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Figure 78. Generating functions for Figure 79. Generating functions for
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Fi!u 80. Generating functions for Figure 81. Generating functions for
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'
with R - 0.80. Y 3p with R = 0.90.

Next, we briefly consider the intersections (i.e., the locations of

the eigenvalues) Of g3 (Rix) and tan( R)x. For small values of R (see fig.
72 for R 0.05), the first two singularities in g3(R(x) just precede those
for tan(1 - R)x. For this situation, the first intersection will occur just

beyond x = 3w/2(I - R), i.e., on the negative arcs of both functions. The
next few eigenvalues occur between the inner pair of singularities on the
negative arcs of the tangent just after the tangent returns from -. The bulk
of the remaining properties of the locations of the crossings of g 3 with the
tangent curve has already been described in the foregoing discussions. These
predicted characteristics can be verified if we examine the corresponding TM 1 .%

sets of curves for n - 3 in figures 72 through 81.
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ii , ( 2),:':

'°
3. . They (R

Continuing to the next higher order, n =4, we have the two rela- A)
tions

[y1ai 4 ofa)j 420 + + cosh(j x)
a jx L (jx)2 (

r 420 195 10 . in . (128)
----- + -- + T-isntx
(jx)- (jx)

3  x i

1420 55 cos x (420 195 10) "
X.4 xO x -oxx - + )inx,

and

r 1 2(jx) r 5420 420 195 55 10 . "I[Yak4(yai + = e)JLaj) _ (jX) 4  (jx)3  (jX) 2 +JTI

-L(- - + 1) 420 19+ 10) sin xc] (129)
r/4201 5 10 40 9

[("420 195 10) 1cosx+ 420 _L5 sin

which when substituted into equation (116) and rearranged gives us

420 195 10\/420 195 10
1tI_ _y +. 10)

++ - . + i)]sinx - - L- x

+(420 55 + 1) (42 _L5+22)c(xY)j r420 55~ 42 95 .2)LV X4 x2 + 1), (±yx7 y))'.

or, in what we can now call our preferred form, this becomes --tan[(1 - - X[(420 - ssx2 + x4 (420 - 195R2 X2 + 10R'x)

. , [(420 - 552 + 10x4)(420 - 195R2X 2  + 10R4 x4 ) (

+ Rx2(420 - 5sx2 + x4)(420 - 55R2x2 + R ]x4)j g4 (Rux)
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We note that the denominator of g4(R;x) is a quintic in x2 , and the

numerator is the product of x and a quartic in x2. This is a level of corn-

plexity beyond those met thus far, but the general nature of the analysis
required is pretty much the same as that we have carried out thus far. Upon
examination of the denominator of g4 (R;x), we find that there are in this case
at most four positive values of x that are roots. Hence, 94(R;x) will have at
most four singularities for positive x. In fact, this is reflected in the
behavior of g4 (R;x) as shown in figures 82 through 84, where we can discern
for R < 0.20 the existence of four singularities. Figure 84 explicitly shows

-'. for R = 0.20 three of the four. As R increases, we see that the inner pair

move together to coalesce and then disappear by the time R attains the value R
%= 0.30 (see fig. 85). With further increase in R, the remaining two singular-
.%- ities repeat this behavior, and by R = 0.80 all the singularity in g4 (R;x)

ceases. For R > 0.80, we have the usual well-behaved smooth increase to a
. maximum, which decreases and moves inward with increasing R. This behavior of

g4 (R;x) is easily seen in figures 90 and 91 for R = 0.80 and 0.90, respec-

tively. The numerator of g4 (R;x) is a product of x with a polynomial that is
a quartic in x2 . Examination of this numerator shows that g4 (R;x) will
possess a maximum of four roots for positive x. For small R these are
located, as we have seen in other cases, as follows: one each between the
inner and the outer pairs of singularities and two between the inner pair of
singularities. This can be seen in figure 82 for R = 0.05. As R increases,
the innermost pair of roots move together, then merge, and by R = 0.10 (see
fig. 83), disappear, leaving g4 negative between the pair of inner singular-
ities. As R increases further, the two inner singularities disappear, and two
roots are present between the remaining pair of singularities (see fig. 85).
As R grows larger, these two zeros move towards one another, merge, and disap-
pear. For R = 0.60, as can be plainly seen in figure 88, there are no finite
positive values of x for which g4 (R;x) vanishes.

1eo0o -0 80.00R=0.05 R=0.10 TM'(n 4)

1_ TM in=4) Q)

54 O __ ------

0. 2.020 .010 25 50 75 000. .0 5.075 0015 50 75 00

(2) wih4p=0.5 with R = 0.10.*1 1
S.0

i! i 61
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150.00 R=O.O TM( =)150.00 R=0.30 TM (n=4)-" "o" f TM (n =4)

Ci)VZ
- 100.00 0 100.00 . . . .-

o .- z

uJ z 4C

-510.00- u__ _

50.0 _ . . . -50.00--
0D-100"00-. .1I -100.000.1i :

0. 250 5.00 7.50 10.00 12.50 15.00 17.50 20.00 0 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00
x x

Figure 84. Generating functions for Figure 85. Generating functions for
"'-4 with R 0.20. (2) with R = 0.30.

150.00 0480.00
CO R = 0.40 ~TM n=4)R=.0T(n4

z CO)
0 100.00 , z 40.00

LA.

I,

z 0. -4.0

z -WPF id0.00

-0 . 50 5.00 7.50 10.00 1250 15.00 17.50 20.00 0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00

-%.x x

Figure 86. Generating functions for Figure 87. Generating functions for
2) with R = 0.40. y4) with R = 0.50.

40.00 R0.60 !TM (n=4) 60.00 R=0.(

z In =4)

S20.00 1. 40.00-" - o 'I o" ,I ! I _

z 0. z 20.00 I

og 4 0.70)
- . z -20.00 - .. ..... z 0. - -

Fd

. -40.00 -- - 0 -20.00z zwl LU
9.-C 6 0 0 0  ~400

0. 250 5.00 7.50 10.00 12-50 15.00 17.50 20.00 0.2.50 5.00 7.50 10.00 1250 15.00 17.50 20.00
x x

Figure 88. Generating functions for Figure 89. Generating functions for
y) with R = 0.60. y 4 with R = 0.70.
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9.6

1..
-. 1.0n-)R =0.90 -/-

4.00 R=0,0 TM (n 4)1 0, R 0,90 TM (n 4)

Z12.40 2" I 0.'0 {,. ,.
I _-- ~O.80-7 -

xD x

"4p8 wihT= .0 ".)wit .0
F /

Fiur 90. Geeatn funcion fo Figure 91 Geneatin fucin for)x' (

94( R1 8 4 - 390R I -605R 21 - 390R + 8R)x6 2 5R 6R 5R
84535,28

0. 2 .50x5.0 - 50R 1 12.5 1 5.00 + 1752 0 0+ 1o 0 1 2.5 1 1".2 J.

35,220

xrfra prcal ag fxwe .0 xaeu anlyisofths

e+asin 1 hw (hat -4Rx 30es +bv 507R -a( 30R +~x For)x (131)al

aFiue 90.Generatin fuins fr iguaiy fre Ge etnge function.
(2) withe R thi 0.80. rstcispall (2) n fith . 87 0.90. 9 or

of R w orifutue r eference, whe ritene out sigulax)ireue d fog4rm:,it

2,35235

g4relat (1iely[ eas t 2isern + fact )tha + ther(28l -e no 2 intersection2unt

1 8R 84 - (39R+62 -7R+ 39R3 + * Ii)x

R 510R'~' i 8 3 2 x

+ 2,1s (6. - 20eR + i snR2 
- 08R3  (131)

352801640

As ca bseninfige 82thouh 5,th two curves lie very close togeth-
er f or an appreciable range of x when R Z 0. 30. Careful analysis of these
exansionseshos thairt enales a(b2 ) othe tan( - R)x. For the small R

valus, 4(Rx) ttais is frstsingularity before the tangent function.
For larger R this characteristic is plainly seen (fig. 87 through 89 for R -

0.50 to 0.70). From the behavior of the two functions for the smaller values
of R which correspond to the presence of singularities in 94 (R;x), it is
relatively easy to discern the fact that there will be no intersection until
at least x = 6. However, as R increases beyond r = 0.40 (see fig. 86, for

example), the first eigenvalue x(2)(R) occurs at a smaller value of x. All
the remaining features of the behavior of the intersection positions have
essentially been discussed in the foregoing cases.
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(2)
3-3-5 The y5p (R)

For the final case, we shall present an explicit discussion for TM,
n = 5. Our two starting relations are

• , r4725 2205 120 1

[YaisCya)'a--J 4 2205 + + 1] sinh(jx)
]a=j, L(jx) 6  (jx)4  (jx)2

4725 + 630 T151 - + -5) cos (132)

L(jx)5 (Jx)3 + 5[(x5 x 3  x)

_ (4725 2205 120 4

and

a -jx 725 4725 2205 630 120 15

I 5 (jx) 5 (x) 4 +jx) 3 (x) 2  x

1[f(725 2205 120 1)Csx+(4725 _630 +15\

(133)

[(1 725 _2205 +120 ) 14725 630 15)X l
Substituting, as usual, these two relations into equation (116)

will give us

(4725 630 15(4725 630 15]sin(x y)

5 X ..

r/[4725 -630 15\(4725 2205 120
LI -5 x3 + ",6t )F + y2

(4725 2205 120 _ 1(4725 630 15 cos(x - y)
X6 X4 x-y y 3  y

which can be manipulated to the relation

'S
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1 315 - 42x2 + x4
tan[1 - R)x] 15x

725 - 2205x2 + 120x4 -x

R(315 - 42R2x2 + R4x4 ) 1
4725 - 2205R2 x2 + 120R4x - R6x'] (134)

.. 'i [I + 225Rx2 (315 - 42x2 + 15x4 )(315- 42R2x2 + 15R4 x4)

* (4725 - 2205x2 + 120x4 - x6 )(4725 - 2205R2 x2 + 120R4 x4 _ R6x6 )] g5(R;x)

*As we can anticipate at this stage of the discussion, g5(R;x) is a
ratio of two polynomials. Its denominator is a sixth-degree polynomial in
x2 . It has as its numerator the product of x and a quintic in x2 . Again it
would appear that we have to deal with a higher degree of complexity than
experienced earlier in the properties of the two functions that generate the
eigenvalues. For reference purposes we give the reduced form of g5 (R;x):

g5 (R;x) (I - R)x[1,460,025 - 4,725(42 - 5R + 42R2 )x2 + 945(5 - 35R + 63R2

35R3 + 5R4jx4 + 15R(2,- 124R + 212R2 - 124R3 + 23R4)x 6 - R3(7- 13R + 7R2)x 8

+ ROx 1 0 ] * [1,460,025 - 99,225(7 - 15R + 7R2 )x2 + 945(40 - 210R + 343R2 - 210R3

+ 4oR4 )x4  305(1 - 225R + 56R2 - 84R3 + 56R4 - 225R5 + R6 )x6 + 3R2(49 - 3,15oR

+ 320R2 - 3,150R 3 + 49R4 )x8 - R4 (8 - 3,375R + 8R2 )xl0 + R6 X12 ]

Again examining the numerator of g5 (R;x), we observe that the
maximum number of finite positive roots is four. As usual, g5 and tan(1 - R)x ..

and their slopes coincide at the origin. This time, the denominator shows by
simple examination that the maximum number of its positive zeros in x2 is
six. However, if we look closely at the coefficient of x10 in the denomina-
tor, we observe that its sign will be positive if R > 0.002370. This corre-
sponds to an extremely small inner sphere. For R values exceeding this ratio
just cited, there will be at most four singularities for g5 (R;x) on the posi-
tive x-axis. At this time, we choose to ignore the characteristics of the
extremely small R case.
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-,'Figures 92 through 95, for R from 0.05 to 0.30, display the situ-

ation for the range of R where g5 (R;x) possesses four singularities and the

number of zeros goes from four to two. Figures 96 through 99 (for R = 0.40 to
R = 0.70) show the characteristics of g5 (R;x) for the range of R where there
are only two singularities and the number of positive finite roots goes from
two to zero.

The essential behavior of g5 (R;x), tan(1 - R)x, and the eigenvalues
is very much like that we have already seen (except for R < 0.002374). Fig-
ures 100 and 101 for R = 0.80 and 0.90, respectively, are now quite familiar
to us for the situation where g5 (R;x) has no singularities.

60.00
00.00 Z,,-O 5 - -17.50 R=0.10 TM(n=5)

R=.5TM (n=5) 0

I. -.(2 ,(I

40.0 0 40. 0

lI-- _ ' -- 1211K r7 ,

. .0 7 0210 1-20.00

*-
2 wih -020 -

' wthR-0.0

00

40. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00 x
0. 2.0&D7400 2 O 7 D0

Figure 92. Generating functions for Figure 93. Generating functions for
Y(2) with R =0.05. Y (2) with R = 0.10.
Y5 p 5p

40.00 0 40.00 ~j

0. 0.-

.0 -

0 0. 25.075 1.01.01.0 75 00

-12). 0. 2.50 5.00 7.50 10.00 121.50 15.0 17.50 20.00

Figure 94. Generating functions for Figurl 95. Generating functions for
yj- 2) with R =0.20. y2with R -0.30.
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I 0100.00 .,

z t3 zDz 5000 d .
0
z 0." :' - w -- J

z 00
-5.0

- 1 - 1 I I z m som.

-_5'0. 2.50 5.00 7.50 10.00 12.50 15.00 17.50 20.00

'-4 Figure 96. Generating functions for Figure 97. Generating functions for
(2) R=.4.fr(2)

Y 5 p with R 0.40. y 5p with R = 0.50.

02.00 256W-f
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0 irII
-"Z."0"-_MW

;.0 - 50.00 o---
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x
Figure 98. Generating functions for Figure 99. Generating functions for

y (2) with R = 0.60. y(2) with R = 0.70."5p S

10.00 R-0.80 - ~ - TM (n=5) l.CRm -T - n-5

0 00 I 0.-

- - _ a I I I
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.00 i i i

w , O0 0.
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Figure 100. Generating functions for Figure 101. Generating functions for
y Pwith R =0.80. y pwith R 0.90.
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4,7.

3.4 Summary Discussion of Eigenvalues

In the preceding section we presented in various degrees of extensive
detail the behavior of the appropriate functions whose intersections yield the

*eigenvalues for a large number of the lower-lying TE and TM modes. We observe
that as the order index n increased, invariably the functions fn (R;x) and

g(R;x) became more complex. Where we could, we merely referred to common
characteristics that appeared for lower orders, which may seem to imply seri-

'A ous omission of detail in the discussion. Fortunately, the resulting discus-
sion should be quite adequate when one properly carries over the portions of

* earlier detailed discussions. These discussions of each individual case and
the large number of accompanying illustrations should be ample enough re-
sources to establish that the eigenvalues can be determined analytically with
an investment of effort of modest difficulty at best. It should be noted,
however, that although the functions fn and gn may present themselves as
somewhat formidable obstacles for determining the eigenvalues, this is cer-
tainly not the actual situation, except for a small number of eigenvalues.
Even this small set can be made tractable with .dditional analytic effort. In

th Uj)general, once any eigenvalue, say the p , Ynp is found for fixed j and n,
good approximate values of the others for that j,n can be readily determined.
This is i consequence of the very close approximation to periodicity that the
set displays. This property is evident in figures 102 and 103. Figure 102
displays the manner in which the TM eigenvalues (y(2)a) vary with R, the ratio
of inner to outer radii for the non-lossy dielectric, where n goes from I to
5. The corresponding situation for the TE eigenvalues ) for n from 1 to
4 is shown in figure 103. In the interest of clarity, these sets of eigen-
values were divided up and displayed as shown in these two figures. Most of
the numerical values from which the curves were obtained are given in table
1. In appendix B we present the computer program that generated the curves in
the figures and the values in table 1.

S'. We have already mentioned the approximate periodicity with p for
-- given j and n that the eigenvalue. fisplay. Next we point out that the proper

behavior is displayed by the YJ i(R) as R decreases; i.e., they go over
smoothly to the R = 0 or empty spherical cavity modes given, for example, by
Harrington.

4

4R. F. Harrington, Time-Harmonic Electromagnetic Fields, Tables 6.1 and 6.2,
McGraw-Hill Book Co., Inc., NY (1961), 270.
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, TABLE , 1 ,*4'CAL VALUES 0?p THlE CONCENTRIC SPHERICAL AVITY
EIGENVALUES y J),(ft~a .3 C()R) (OR VAUE NOT EXCEEDING 20)

TABLE Ia. THE TE EIG3NVALUBS xl)(R)

n- p p,,,2 p - 3 p - 4 p-S

R - 0.10 4.52229 7.84656 11.18355 14.55528 17.95607
R - 0.20 4.68640 8.37806 12,16588 16.00839 19.88013
R 0.30 5.04272 9.31415 13.70082 18.13297
R - 0.40 5.63899 10.69922 15.86357

R - 0.50 6.57200 12.72134 18.95438
R - 0.60 8.05525 15.81259
R - 0.70 10.60490
R - 0.80 15.78670

n-2 p-, p,,2 p-3 p-4 p 5

fR , 0.05 5.76350 9.09S44 12.32478 15.52005 18.70149

fR - 0.10 5.76489 9.10671 12.36709 15.62634 18.90949
R , 0.20 5.79965 9.31046 12.90198 16.59799
R , 0.30 5.96125 9.95545 14.16502 18.49099
R - 0.40 6.35744 11.14065 16.17099
fR - 0.50 7.11156 13.02612 19.16249
R - 0.60 8.44278 16.01949
ft - 0.70 10.86580
ft - 0.80 15.94308

n -3 p - I p - 2 p - 3 p - 4 p 5

R , 0.05 6.98792 10.41712 13.69806 16.92349

fR - 0.10 6.98800 10.41787 13.70239 16.93949
R , 0.20 6.99344 10.47287 13.91692 17.45049
R - 0.30 7.05135 10.83867 14.83834 19.01999

R - 0.40 7.28038 11.77298 16.62299
R - 0.50 7.84504 13.47112 19.47099
R - 0.60 0.99127 16.32599
R - 0.70 11.24556
f t- 0.80 16.17449

n-4 p- i p-2 p- 3 p-4 p- 5

R - 0.05 8.18256 11.70491 15.03967 18.30099
R --0.10 8.18256 11.70495 15.03998 18.30249

. 0.20 8.18328 11.71655 15.10656 18.51699
ft 0.30 8.20089 11.89008 15.69443 19.70949
R - 0.40 8.31928 12.56665 17.21049
R - 0.50 8.71681 14.04366 19.87549
R - 0.60 9.67169 16.72599

ft - 0.70 11.73234
R - 0.80 16.47849

% .
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TABLE 1 NUMzNICAL VALUES Or THE CONCENTRIC SPHERICAL CAVITY EIGD1VALUES
x((

1
() (FOR VALUES NOT? EXCEEDING 20) (Cont'd)

TABLE lb. THE I'4 ZIGENVALUES x 2
t)(R)

ftp

n-1 p - p. 2 p- 3 p. 4 p- 5 p-6

R - 0.05 2.74162 6.09682 9.24655 12.31915 15.33189 18.31399
R - 0.10 2.72705 5.96203 8.86383 11.77078 14.87325 18.13634
R - 0.15 2.68855 5.69396 8.55252 11.80250 15.28791 18.86890
R - 0.20 2.61986 5.44453 8.60724 12.24786 16.04527 19.89957
R - 0.30 2.41244 5.34975 9.37465 13.72043 18.14151
R - 0.35 2.29633 5.49884 9.97643 14.70131 19.48265

R - 0.40 2.18403 5.75930 10.71862 15.86959
R 0.50 1.9846 6.6185 12.7281 18.9565
R 060 1.82158 8.07212 15.81490

f 0.70 1.68939 10.61018
R 0.80 1.58100 15.78800
R,- 0.90 1.49067

- 0.99 1.42100

n2. .I p-2 p-3 p-4 p S p.6

R 0.05 3.87022 7.44284 10.71155 13.91527 17.08799
R 0.10 3.86985 7.43550 10.67031 13.77915 16.77725 19.73127
R, 0.s 3.86737 7.39009 10.45973 13.35562 16.40299 19.70049
f 0.20 3.85861 7.25623 10.12745 13.23926 16.74256

- 030 3.79300 6.82286 10.17676 14.23332 18.51972
R - 0.40 3.62547 6.73938 11.20525 16.19031
R - 0.50 3.38587 7.26026 13.04726 19.16882
R - 0.56 3.23654 7.89972 14.65640
% = 0.60 3.14079 8.49565 16.02691
R 0 0.70 2. 92296 10.88207
R . 0.80 2.73793 15.94677
R - 0.90 2.58197
R - 0.99 2.46150

n 3 p . 1 p - 2 p - 3 p . 4 p 5 p 6

R 0.05 4.97340 8:72175 12.06357 15.31344 18.52349
R 0.10 4.97341 8.72142 12.06080 15.30030 18.47949
t, 0.15 4.97327 8.71675 12.02450 15.15368 18.12549
R 0.20 4.97235 8.68951 11.85647 14.77432 17.86149
R 0.30 4.95761 8.41775 11.37826 15.00803 19.08649
R 0.40 4.88138 8.03405 11.92239 16.66549
R 0050 4.68865 8.16066 13.51647 19.48399
R 0.60 4.41209 9.10303 16.34049
R 0.70 4.12700 11.27912
R' 0.80 3.87106 16.18199 %

R 0.90 3.65137
R 0.99 3.48150

%
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p TABLE I- UMERICAL VALUES OF THE CONCENTRIC SPHERICAL CAVITY RIGERVALUES

Y(J)(R)a E x(i)(Rc) (FOR VALUES NOT EXCEEDING 20) (Cont'd)%

TA1BLE 1b. THE 114 EIGEINVALUES ()R
np

4 P- p -2 p -3 p .4 p-Sn

at - 0.05 6.06194 9.96754 13.38012 16.67399 19.91499
ft - 0.10 6.06194 9.96753 13.37997 16.67299 19.91099
R - 0.20 6.06185 9.96279 13.33330 16.46049 19.40899
R - 0.30 6.05884 9.85890 12.86632 16.05899 19.84549
R - 0.40 6.03032 9.46274 12.86093 17.29099
Rt - 0.50 S.90808 9.25947 14012652 19.89849 I
Rt - 0.60 5.64693 9.86902 16.75099
R - 0.70 5.31651 11.79056
R - 0.60 4. 99586 16.49099
ft - 0.90 4.71383
ft - 0.99 4.49450

n- 5 p .I p -2 p -
3  p - 4  P-S

ftR 0.05 7.14022 11.18899 14.67012 18.00849
R -0.10 7.14022 11.18898 14.67010 18.00799
ftR 0.20 7.14021 11.18833 14.66128 17.95149
ftR 0.30 7.13063 11.15620 14.40138 17.38199
R -0.40 7.12981 10.88S25 14.00492 18.06249
R - 0.50 7.06229 10.49027 14.86804 j

R - 0.60 6.84586 10.16781 17.2S299
Rt - 0.70 6.49409 12.40438
ft - 0.80 6.11614 16.87000
Rt - 0.90 5. 77313
ft - 0.9 5.50500

4. The variation of the eigenvalues with R displays a very rich diver-
sity of characteristics. We shall emphasize only a restricted number of

these, which is far from exhaustive. One immediately eviden1.Yharacteristic
is the grouping of the eigenvalues into families of the form YA'(R) for j and
p f ixed Ind the index n varying. If we fix our attention on the spectral
group y ( 1(R)a, we observe for these TE eigenvalues that as R increases from
zero the eigenvalues vary quite slowly at first. The larger the value of the
index n, the greater the range of R with this slow variation. This behavior
is repeated for the family belonging to p - 2. No0w, however, there is a
smaller range of R over which the variation in y~l)(R)a is slow. As p in-
creases, we observe in figure 103 the continuation of this trend. Immediately
following this very slow variation of eigenvalue with increasing R, we find in

each case in figure 103 a region we call the "knee" over which this rate of
change speed?1 up from slow to rapid variation with R. Once past the knee of
the curve, y 1)a increases much more slowly as R increases. What we have here
is a rough qualitative division of the concentric spherical cavity TE eigen-
values into three regimes corresponding to a small interior sphere, an inter-

medatesized interior sphere, and lastly a large enclosed sphere. leor
looking at f igure 102 f or the 114 eigenvalues, we note that all the Yn 1('R)
always increase with R whether variation is rapid or slow. n

Now let us examine the manner in which the 114 eigenvalues vary as R 5

is varied. The same general characteristics are displayed by the y -p for
p _> 2, i.e., they form distinct families for each p; also they indicate that
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three eigenvalue regimes can be identified which correspond to small, inter-
mediate, or large inner s heres. Thus we see, for the p Z 2 families, at
first a slow change in Yn a as R increases from zero. The larger n is, the
larger is this range of K. This is followed by the intermediate region in
which this variation goes from slow to quite rapid and then in turn the final
region of rapid variation in y(2) with R. In the TM case we have a differentnp
type of behavior that is quite evident in figure 102. Unlike the simple knee
of the TE eigenvalue trajectory, we now have a "nose" in the intermediate TM
region. This feature indicates the presence of an interesting property,
namely that for p > 2 as the inner sphere radius grows in size with the outer
radius fixed, the TM eigenfrequency decreases initially (for a not insignifi-
cant range of R in many cases) and then later increases with R as one would
expect. The behavior for large R is that where the inner sphere is quite close
to the outer sphere. It would seem to be quite natural in this situation that
the eigenfrequencies be such that multiples of half-wavelengths span the gap
between inner and outer spheres. For the TE modes (see fig. 103) and for the
p > 2 TM modes (see fig. 102) this is indeed the case.

For R large, the conducting boundary surfaces are close together and.
parallel. In any small region containing portions of these boundary surfaces,
we have what approximately looks like a parallel-plate capacitor system. We
should have some natural field distribution that looks like the parallel-plate
system. The TE solutions cannot satisfy this. What we do observe is that the
TM family of y(2)(R) values fills the bill here. Each trajectory in this"n1
family starts out at the empty spherical cavity eigenvalue (i.e., for R = 0)
and then, as R increases, decreases in the familiar manner initially. Now

h(2)(R) continues to decrease as R continues to increase. Thishowever# "n1
behavior is strikingly unlike all the other trajectories of eigenvalues.

Another feature of considerable significance is readily evident in
figure 102 for the TM eigenvalues and also in figure 103 for the TE eigen-
values. Whenever the trajectories intersect we have degeneracy present. This

I. degeneracy is present in addition to the usual degeneracy associated with the
angular variables 9 and *. It should be recalled that this property does not
exist for the empty spherical cavity. For the systems that we shall be dis-
cussing in subsequent reports, that are derived from the concentric spherical
cavity problem, this feature shall play a very important role. Note that for

% a given value of R we observe at most a double degeneracy occurring.

Some further interesting features that can be extracted from figures 102
and 103 are the ordering of the eigenvalues. Clearly, for very small R
values, the ordering is precisely that of the empty spherical cavity. As R
increases, we can observe switching of order of pairs of eigenvalues as the 6

trajectories cross. In addition to this rearranging of the ordering of the
elgenvalues due to degeneracy, another contributing factor enters. This is
the result of the "nose" region in the TM trajectories which move the eigen-
values to lover values with increasing R; e0g, at R -0.3 the T4 value of
Y12 (0.3) lies lower than the TE value of Y (0.3)0
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Although we have explicJ tly evaluated a rather large number of eigen-
A. values Y(1)(R)a up to the value 20, we have by no means determined them all.

We do have, however, all those for values up to about 6.50. Clearly, the
density of eigenvalues increases rather quickly.

Further examination of the eigenvalue trajectories will reveal many
other physically important features. Since each of these will be dealt with
in subsequent reports, we shall defer any further discussion until they
appear.

The cavity field distributions have been obtained for each of the
modes in table I. DiEc-ussion in depth of the field details constitutes the
next report in the sequence.

?-.0

0%r
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.4 APPENDIX A. -- ORTHOGONALITrY OF THE ELECTRIC FIELD EIGENVECTORS E 1 " r
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" ii:

We shall demonstrate here the orthogonality relation for the electric % ... _
eigenvector modes. Consider first the TE modes themselves. We have, then,
upon integrating over the concentric spherical cavity, . .

fff dT( ,(1,o) + +(1,o 0) +,,.,.-
r% npm  (r) p m . .... :

i ]b 2w + : _b r (0) .(0)

M sin e f df[Vx(rnp][x(' 4rn~,m ,( ))] ,

which by equation (24) becomes x.,,).*p r

f b r r2 f 7r d sin 0 f i do
a 0 0 00

x I + () + (0 + 0)_ _______ _ _np'm
nmr npm() aonpmC r) 30nplm(+r

sin2e af a3 ae

Let us focus on the integration over *. We have..
f 1 r a,(o) (o) m' 2 (o) m(o)m

[."d vp dn'p'm' =___Sd nm~'''= - np~ ( ) '

sin2 e 0 d a ao sin 2e o do *npmon'p'm sin28

27r

xn'p1(Yn'pr)Pnm(co s e)Pntm,(co s e) f dt cos mt cos Im' ".,

5% %

which becomes

m21 0- sin2 e Op(ynr)fn,p,(Y nlpr)pnm(cos e)Pnm(cos 9)

also

(0) (0) dPnm(cos 9) dPnim,(cos e)
f 0-cu ae a8 = r de dO

27 sin ,siI) dPnm(cos 9) dPnm(cos 9)f 0 dt sin at sin m'1Z 6mmnt'wonp(yn )r)onlpltynlpvr Md
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Combining the two pieces we obtain after integrating over .

W• b dr r2 *np(y r)fnp(Y 1P r) f de sin 0 { Pnm(cos 8)Pnom(cOs 6)
a 0 sin2

dPn~m(cos 9) dPnem(cos e)
de dO

However, the integral over 8 is given in Stratton
I as

nn' 2n(n + 1) (n + i)!l

2n + 1 (n - m)l

We then have remaining integration over the radius, namely,

76nn,6mml 2n(n + 1) (n - m)l dr r2  , (1)r)np, )

nn 2n + I (n + ,,)1 -a n

Now # (jY Mr) satisfies the differential equation

'" (1) , 2J  d2  . I [  (I) , dJ nl rj

0 (jYP r)2 d() 2  *np(jynp r) + 2(jynp r) (1) *np(jynp r)

isfies d(jynp r)

[" (I)nr)2 + n(n + 1)]1np(jY(1)r)

and *np'(iynpr) satisfies the equation

0 O (y]npr)2 ( 2  *np,(jypr) + 2(jynpr) (1) *np'(jinpor)

d(jynplr)2 d(jynplr)

- [(jynpir)2 + n(n + 1)]*np-(jYnp4 r)

Then multiplying the first of these by #np,('Yn(1!r) and the second by
*niy''Mr) and subtracting will give us, after some further reduction,
#npnp 

p 
p

%.

IJ. Stratton, Electromagnetic Theory, McGraw-Hill Book Co., Inc., NY (1941),
417.•



0 %pj(1!) d2npC Jnpr) Sn~,( r d np.('jynp~r) "" "'"

( .
..

( dnp(Jn r) 2 d2*np(j l.r)
+ [ rn Tn pr . -np[ p(r) d r 1 = I

r2 np JYnpl l r )  dr rvnp 2  r dr

' 1) dr)d- 2 r r nnpYnp~r- vniJynp)r.+ .p'iyAr) npx4r[iA) -p

Integrating this over r from a to b we have for the first two terms

((1) d2onp(jy)(r) d2p . (1)

a dr r2 1 np-(jynpsr) nptJynp r) np[ )r)

'['1' donp(jy~pr ((l dfnp.(jy ')r)l r =b
jr2 I*n,(jy('r)n r - (1 n I

npn •n~ypr

dr r-dr ra

b 1) dnp() Y np r) dnp'_(jyn r)
2 l d ' ' ' "Ljynp-ro dr Onp (.Ynpr) dr

The first term on the right-hand side vanishes since the se stp we vish a
the cavity boundaries. The remaining term cancels the sec d vais at t
our original integral over r. Thus, we have left

(1))2 - (,p)) b
-Y fYp)2  dr r2 *np.(jyA~) n(1~) o.

np pIplopjypr=
a

For p' * p the scalar functions are orthogonal and hence

onc dT(r)Enp'(r) +(1p ,0) + [Q(1'J)]6 96p' 6u 1

spher
cavity

Next we consider the TE even modes. By following the same steps we find
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Now for the TH odd eigenvectors:

ff1 dr(r E)(r) 2 +2,o)

b 2711
f1 drr 2 f de sin 0f dO sin d 2

a 0 012

x x x r • x Lrlpum,)] •

4, However, using equation (24) we have

++(6)++ ++(o) (o)(0)

r + + (r n epaa (ee 3*npm ,_ _x n m e r r a r s i n 0 si e € a

which after some manipulation reduces to

(0C) + I2 [+ Col (Y(2))2[+.(O)])|

=rnm -erar ¥nm np r p

+

x x Cr,... erl [rI.. ,r .

S +ee r* (It. Lmj) (+ 1

r r nm sin 0 \ r npmJ

Then we have the relation

.j np() N -.€ ),c! {2 .() (Y())2[r*,(o),
_(2jr2) o) r • E p [+'n2 J - ('rnr)2[rn lnpmJf

a2 (n) p3 (13p r- o)1\p
X ...1 G ,L2 o- -* e[-a'l + L - [ r.../

ae r_ ar ..,.o ])I si' a+ r, 3r °n]m.a#n''m' +r 3r 1. 'n#

or, more explicitly,
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.

[r*np(jyn('r)] - [n)]2[r*np(jy'2)r)] -2 -[r*nmpfr ohp'r]

(2) ]2[r ~ . 2r)] . )nm '
- Ln'p r*(' n' Pn(cos 9 )Pnfmm(cos 6) sin m sin m'o

11 d 2) (y(2)dPnm(cos 6)
S-- [rinpJ( 2 1)r)]  ! [rnspl Ojp-r)J •

r. jdr [npjn ) (r dr dO
dPn $'(cos 6) Ltd . 12)r..

dO Siflm~ifl*+ mm )'k
• d sin mO sin m' +d.,, [r~np(jy ,r)]

* {p [rn npi r) Prm(cos 8) Pnom0(cos 6) cos c# COs m' O

Integration over * gives wmm, for each of the first two terms and m26mm for
the third term. In turn, integration over 6 of the sum of the second and
third terms gives

2n(n + 1) (n + mn)!
2n + 1 (n - m)! 6nn'6 ' '

while integration over 6 after * gives

2w (n + m)!

2n + 1 (n - mn)!

We have at this stage

_(2,o) +(2,o) 27 (n + m)!
(ijC) 2 ff dE nm " En'p1m'= + 1 (n - i)! 6nn

ib drr2 (2-[yj]

x jb dr r2 -A2 - [ r~np(3n .2)r))l - [ynCO.]2 [ r~npC jyn()r) ])

a dr 2  np np np~r)

d2 (2)(2)

+ n(n + [) jT [rrnp(jy( r)] [rnp)])

If we use the differential equation that defines the *n (jY (2) r), namely
that of equation (48), we can rewrite the integral on the rigt-hanpd side as

4so
0.%
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n(n + I) f dr n(n + 1)*np(jynp r)*,p(jynPlrJ + r [rlnp(jynp r)]

-,a.. d

d [rinp-(jynp-r)] •

Consider the integral of the second term which we can evaluate as follows:

dr d- [rnp( Ty rp r)] [ rdnp, (jynp r ) ]
a r 

Ii
brn .(2) r ' d . 2  r-b

I dnp r=a
]~b ( 2) _2 [~p 2 2
a d npi nr) _ [rnp.np'r)] = - dr rlnp( jy( )r)ar r~p np r)dr2  nlan

, . nl[ (2 ]2 [ r rn ,C r ) ] +pI n + 1) [r ,np ,( y (2j )].,a]
1LnpJl ~ np') nr2jnpr)

Combining the pieces then, we have

+(jwe) T1 (2o)l+ +(2,o -2"rn(n + llln + in)!cj ) II E npj (r)" - n'p~m'- =nn'O (2,)n 2
(2n + ) n - M)l 6nn 6mmq1Ynp ]

*b 2)• dr r2 - np(j 12) ,.p.(j2) r

a JnprJnp' npr)

.1'*Processing this remaining integral exactly as we did the corresponding one for

*. np~npt we will find the integral over the radius r from a to b vanishes for

p p'. Thus, we have

-. 
P.1

• (2,o),+ +(2,o) + (2,o) .'
.[SdI npm  r*En-pIm,(r)  1~p 26nn'Smm-6ppe

:..: Next we demonstrate orthogonalty between the Jnpm Oan thEnpme l "

Thus, consider

n p1,o) r (d1 sin
Ill~ff dT(C l ~") 9--'pomi 'r ) fa dr r2#npCjynp)r) n-p, JYn'pvr) f0 d i

a 0

" d# • pm(cos e)Pnum(cos e) sin m* cos m'.

dPnm(cos 8) dPnom , (cos 0) c s
de dO

+~~*d (.icn2 sn '
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But

f do sin mo cos m'=o 0 =f d cos m sin m' .
0 0

+ (2,e) +(2,o) -.
A similar result is obtained for enpm *n'pm" Then we have

Sff d, CI) (re ') E1 oji +
Snpm,(r) =0 ,)j i= 1, 2

+(2,Finally we show orthogonality between the -- and the Enpm Clearly,

(1,e) +(2,o() (2

dr -*(1,e) * * , o) ff d (1 ,o) +(2,e)
fff Ejspv = -- J +Enpm Enupeme •

(This follows immediately from the integration over *.) Continuing,

dr 1,o) * (2,o) + -1 b r21r

fff d npm Epm,(r) - dr r2  de sin e d[0 x)

x I ,'oVn',p 'mJ 
"

which by equations (24) and (25) in the body of the report becomes

-9 1 b dr r2 fWdMsinj 0 w*e 3onpm + 3on__

T a 0 0 sie ae C

1+ a__ (0L* r sin B sin e + 1 - 2 a * 1
L ~~~r sin2  np'' 99r

-[r*0p.m.] + a ,-nIp'm' =- dr r2 U de
nsin86 3f r r n l iW a d

" (o) ? 0n' 1  3 An 'r'I ,-

f"2 d o 1 3r e i a-- - •
0 r 38 aO r 3rLr a

However, if we note that the integration over 0 vanishes for all m,m' we have 5
SfS d~t ' ) N , °)( ) (2,o ) ,+ ' '

fff d(r g +) u0J[) r '.pmr) o

82

IN % %o

r lw%06
'N V % %



APPENDIX A

Frprecisely tesmraonwe obtain

Now consider

+(1. 0rf~ ~ ) + (2,e) = 1 fb (0) _ _

En %pinu -j--- dr r 2  1 d ~ np
a 0 (sinO 0 3

(eam] 3* r r(e)1\.]

1bdr r
2 fiT d8 f.2 d* (np(jynp r) [r''(jy n~pr)Il

'.1 .P~ 3(CO5 8)dPn'mIn(cos )A
Pn*~ d) in Cos ** Cos in'*

+ d~Ose Pn'mIn(cOs 6)mn' sin *nt sin in'

But

m 27 d* cos t4 cos m'* mw6me
0 -

and

i' J 2 d# sin a4sin m'* mw6mmf
0

We thus have

F, -(1,o) + (2,e) mw6mn' b
jj t nin En~~=- C a jvpdYnr

* * [r*n.0g(Jynfp r)J jw dO ~nmin-'
* 0 u

and

f" fde [Pnin(cos O)Pnlm(coa 8)] -Pnm(coS 8)Pn.3 I(cos 8) 0~:

IN
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Hence ye have

and for the same reasons we obtain the last of the six relations we need:

f _.(1,e) +(2,o),

fff dT +Enp Enpm' 0•

84?

V._ .

-,.. 9,

..

" ""-.



Z: -" F+. .+ , _,; " +++;+++-' -- - -_. ... . . .. ,- % ' -- +;+.+ -' - - , -,; ., *-+

APPENDIX B.--COMPUTER PROGRAM FOR THE EIGENVALUES AND THEIR GENERATING
FUNCTIONS '.

% %

.,..85+

1o~

• + .. . +... IP 
+

l a + 1 --+++ + %W ,



APPENDIX B

C TEN
COMMON RTEXT
INTEGER TEXT(2) ,T(2) ,Ti (2)
DIMENSION X(200) ,Y(200) ,RTAN(200) .XiI(10) ,XlF(iO) ,XCROSS(10)
DIMENSION IFLAG(i5)
DATA IMARK/' /

10 WRITE (1,20)
* -20 FORMAT (///'ENTER TYPE OF RUN'!

-'TMi /TM2/Th3/TM4/TM5/TEI/TE2/TE3/TE4')
WRITE (1,30) T(1),T(2)

30 FORMAT ('PREVIOUS RUN WAS: '2A2///
-'(OR ENTER "Q" TO QUIT)')
READ (1,40) (TJ(I),I=i,2)

40 FORMAT (2A2)
IF (Ti (1).EQ.'Q ')GO TO 1000
IF (T1(i).NE.' ' GO TO 50

Ti (1)=T(i)
Ti (2)=T(2)

50 T(i)=Ti(i)
T(2)=T1 (2)
TEXT(1)=Tl(i)
TEXT (2) =Ti (2)
IF ((T(l).EQ.'TM').AND.(T(2).EQ.'i ) ICALL=1
IF ((T(1).EQ.'TM').AND.(T(2).EQ.'2 ')ICALL=2
IF ((T(1).EQ.'T14').AND.(T(2).EQ.'3 ')ICALL=3
IF ((T(l).EQ.'TM').AND.(T(2).EQ.'4 ))ICALL=4
IF ((T(i).EQ.'TM').AND.(T(2).EQ.'5 ')ICALL=5
IF ((T(1).EQ.'TE').AND.(T(2).EQ.'l1')) ICALL=6
IF ((T(i).EQ.'TE').AND.(T(2).EQ.'2 ')ICALL=7
IF ((T(i).EQ.'TE').AND.(T(2).EQ.'3 ')ICALL=8
IF ((T(1).EQ.'TE').AND.(T(2)%EQ.'4 ')ICALL=9

60 WRITE (1,70) R
70 FORMAT ('ENTER R (PREVIOUS VALUE WAS ',F7.5,')'

READ (1,80) RI
80 FORMAT (FlO.8)

IF (RI .GE.1.) GO TO 60
IF (RI .EQ.0.) R1=R
R=R 1
NPNTS-200
DELX=.i
[(-0
L-O
M=0
KEND=O
DO 90 1-1,15

IFLAG(I )=0
90 CONTINUE

100 IF (L.NE.i) GO TO 110
DO 220 M-1,10

IF (M.CE.iO) GO TO 430
110 IF (L.NE.0) DELX-(XF-XI)/NPNTS

DO 210 I-0,NPNTS
X(I)-FLOAT(I)/iO.
IF (L.NE.O) X(I)=XI+FLOAT(I)*DELX
XT-X(I)
CALL FNCTN (ICALL,XT,YT)
Y(I)=YT

S-SIN(A)
C=COS (A)
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RTAN(I)-S/C
ICROSS-0
DIFF-YT-RTAN(I)
IF (DIFF.LE.0) ND-O
IF (DIFF.GT.O) ND-i
IF (I.EQ.0) ND1-ND
IF (ND.NE.ND1 ) ICROSS=1
IF((RTAN(I).LT.0.).AND.(RTAN(I-1).GT.O.)) ICROSS-O
IF((RTAN(I) .LT.O.) .AND. (RTAN(I-1) .GT.O.) .AND. (RTAN(I-1) .LT.

-Y(I-1))) ICROSS-1
IF (I.EQ.O) ICROSS-0
ND1=ND
IF (L.NE.0) GO TO 120

IF (ICROSS.EQ.1) K=K+1
IF((K.EQ.1).AND.(ABS(DIFF).LT.O.00001)) K=O
IF (K.EQ.O) ICROSS=O
IF CICROSS.EQ.1) XlI(K)=X(I)-DELX

120 IF (L.NE.1) GO TO 130
IF ((ICROSS.EQ.1).AND.(ABS(DIFF).GT.10.)) IFLAG(K)=1

130 IF ((I.EQ.0).AND.(ICROSS.EQ.1)) IFLAG(K)=1
IF ((L.EQ.1).AND.(IFLAG(K).EQ.1)) GO TO 150

IF (ICROSS.EQ.1) WRITE (1,140)
140 FORMAT (1*')

IF (Y(I)*RTAN(I).LT.0.) GO TO 150
IF (L.EQ.2) GO TO 170
IF (ABS(DIFF).LE.0OO1) X1F(K)=X(I) C
IF (L.EQ.O) GO TO 150
IF (K.EQ.0) GO TO 150
IF (ABS(Y(l)-RTAN(I)).LE.0.00001) GO TO 320
IF (ABS(X(I)-X(I-1)).LE.O.000001) GO TO 320

150 IF (ICROSS.EQ.1) XII(K)=X(I)-DELX
160 IF ((L.EQ.1).AND.(ICROSS.EQ.1)) X1F(K)=X(I)

IF ((L.EQ.O).AND.(ICROSS.EQ.1)) XIF(K)-X(l)
IF ((L.EQ.1).AND.(ICROSS.EQ.1))GO TO 170
IF (L.NE.0) X1F(K)-X(I)

170 IF (L.EQ.1) GO TO 200
IF (ICROSS.NE.1) WRITE (1,180) X(I) ,Y(I) ,RTAN(I)
IF (ICROSS.EQ.1) WRITE (1,190) X(I),Y(I),RTAN(I)

180 FORMAT (F12.5,5X,2FI2.5)
190 FORMAT CF12.5,5X,2F12.5,5X,'*')

4200 IF ((L.EQ.1).AND.(ICROSS.EQ.1)) XI=X1I(K)
IF ((L.EQ.1).AND.(ICROSS.EQ.1)) XF-X1F(K)
IF ((L.EQ.1).AND.(ICROSS.EQ.1)) GO TO 100
IF (L.EQ.0) KEND-K

210 CONTINUE
IF (L.NE.1) GO TO 230

220 CONTINUE
230 IF (L.EQ.1) GO TO 310

IF (L.EQ.2) GO TO 350
240 NFLAG-0

DO 250 K-i ,KEND
NFLAG-NFLAG+IFLAG (K)

250 CONTINUE
Ki =KEND-NFLAG
WRITE (1,260) T(l) ,T(2) ,R

260 FORMAT (//13X,2A2,'ROOTS FOR R-',F7.5//
-lOX, 'K', 13X, 'XI ',lOX, 'XF'/)
DO 290 K-i ,KEND

IF (IFLAG(K).EQ.0) WRITE (1,270) K,X1I(K),X1F(K)
IF (IFLAG(K).EQ.1) WRITE (1,280) K,X1I(K),X1F(K)
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20 FORMAT (1OX,11,5X,2Fi2.5)

-'ENTER # OF CROSSOVER TO EXPAND'/
-'OR RETURN TO CONTINUE')
READ (1,370) K
IF (K.EQ.0) GO TO 350

310 XI=XII(K)
XF -XlF (K)
L- 1
M=0
IFLAG(K)=0
GO TO 100

320 WRITE (1,330) K
330 FORMAT (I//Il,' CROSSOVER OCCURS AT')

WRITE (1,190) X(I) ,Y(I) ,RTAN(I)
WRITE (1,340)

4 340 FORMAT(//
GO TO 240 '

350 WRITE (1,360)
360 FORMAT (//ENTER 1 TO START OVER'/

-' 2 FOR EXPANDED SCALE'/
-'OTHERWISE RETURN FOR GRAF')
READ (1,370) IGRAF

370 FORMAT (M)
L- 1
M-0
IF (IGRAF.EQ.1) GO TO 10
IF (IGRAF.EQ.2) GO TO 380
CALL GRAF (NPNTS,X,Y,RTAN)
GO TO 240

380 WRITE (1 ,390)
390 FORMAT ('ENTER K')

READ (1,370) K -

WRITE (1,400) "

400 FORMAT ('ENTER INITIAL AND FINAL VALUES OF X')
READ (1,410) XI,XF

410 FORMAT (2F9.5)
IF ((XI.NE.0.).AND.(XF.NE.0.)) GO TO 420

XI-X1 1(K)
XF=X1F(K)

420 L-2
I1-0
GO TO 100

430 WRITE (1,440)
.5440 FORMAT ('NOT A REAL CROSSOVER')

M-0
IFAG (K)- 1
GO TO 240 .

1000 STOP
END

C
C
C

4' SUBROUTINE FNCTN (ICALL,XT,YT)
C

COMMON R
XSQ-XT*XT
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IF (ICALL.EQ.1) GO TO 10
IF (ICALL.EQ.2) GO TO 20
IF (ICALL.EQ.3) GO TO 30

IF (CALLEQ.4 GO O 4
IF (ICALL.EQ.4) GO TO 40
IF (ICALL.EQ.5) GO TO 50
IF (ICALL.EQ.6) GO TO 60
IF (ICALL.EQ.7) GO TO 70
IF (ICALL.EQ.8) GO TO 80

10 Th1N-(I.-R)*XT*C1.+R*XSQ)
TMlD=RSQ*XT**4-(1 .-R+RSQ)*XSQ+l.
YT=Th1N/TMID
GO TO 100

20 Th2N=3*(1 .-R)*XT*(RSQ*XSQ**2-2*(1 ..R)**2*XSQ+12.)
TM2D-(R*XSQ)**3-3*R*(2*RSQ-3*R+2.)*XSQ**2-18*(RSQ-2*R+1 )*XSQ

-+36.
YT-Th2N/Th2D
GO TO 100

30 A-15.-2*XSQ
B=15.-2*XSQ*RSQ
C=XSQ**2-2 1*XSQ+45.
D=(XSQ*RSQ)**2-21*XSQ*RSQ+45.
TM3N-3*XT*(A/C-R*B/D)
TM3D=1 .+9*R*XSQ*A*B/ (C*D)
YT=Th3N/TM3D
GO TO 100

40 A-420.-55*XSQ+XSQ**2
4 B-420 . .55*XSQ*RSQ+(RSQ*XSQ)**2

C=420.-195*XSQ+10*XSQ**2
D-420 .-195*XSQ*RSQ+10*(XSQ*RSQ)**2
TM4N-XT*(A/C-R*B/D)
.Th4D=1 .+R*XSQ*(A*B)/(C*D)

4 YT-TM4N/Th4D
GO TO 100

50 A-4725.-630*XSQ+15*XSQ**2
B-4725 .-630*RSQ*XSQ+1 5*CRSQ*XSQ)**2
C-4725 .-2205*XSQ+1 20*XSQ**2-.XSQ**3
D-4725.-2205*RSQ*XSQ+120*(RSQ*XSQ)**2-CRSQ*XSQ)**3
T115I4XT*(AIC-R*B/D)
Th5D-1 .+R*XSQ*A*B/(C*D)
YT-TM5N/TM5D
GO TO 100

60 TElN-(l.-R)*XT
TEID=1 .+R*XSQ
YT-TE1N/TE1 D
GO TO 100

70 TE2N=C1.-R)*(l.+(l./3.)*R*XSQ)*XT
TE2D-1 .-(1 -3*R+RSQ)*XSQ/3+RSQ*XSQ*XSQ/9
YT-TE2N/TE2D
GO TO 100

80 A-15.-XSQ
B=15.-RSQ*XSQ

"'1~.C-5.-2*XSQ
D-5 . 2*RSQ*XSQ
TE3N-XT* (A/C-R*B/D)
TE3D-3 .+R*XSQ*A*B/ (3*C*D)
YT-TE3N/TE3D
GO TO 100

90 Y-XT*R
89

66



APPENDIX B r

Y3-Y2*Y
Y4-.Y3*Y
Y5-Y4*Y
X2-XSQ
X3-X2 *XT
-X4=X3*XT
X5-X4*XT
A=1 05*XT-10*X3
B=1 05-45*Y2+Y4
C=1 O5-45*X2+x4
D=105*Y-1O*Y3
TE4N=A*B-C*D
TE4D-C*B+A* D
YT-TE4N /TE4D

100 RETURN
END

C
C

SUBROUTINE GRAF (NPNTS,X,Y1,Y2)
COMMON R,TEXT
INTEGER TEXT (2)
INTEGER RTEXT(3)
DIMENSION X(200) ,Y1 (200) ,Y2(200)
ENCODE(6 ,5 ,RTEXT)R

5 FORMAT ('R-',F3.2)
CALL MINMAX (Y1 ,NPNTS,1 ,YIMIN,YI MAX)
IF (Y1MAX.GT.150.) YlMAX-1 50.
IF (YIMIN.LT.-99.) YlMIN'=-99.
DO 10 I-i ,NPNTS

X (I)-X( I)
IF (Y1(I).GT.150.) YI(I)=150.
IF (Y1(I).LT.-99.) YI(I)--99.

10 CONTINUE
CALL SETPDQ
CALL SCREEN
CALL INIT (1 .5,1.5)
CALL SCALE CX,NPNTS,8.,1,0)
CALL SCALE (Yl,NPNTS,5.,1,1)
CALL ENTGRA
CALL XAXIS ('X',1,8.)
CALL YAXIS ('FUNCTIONS FOR R',15,5.)
CALL DATAQ (X,Y1,NPNTS,1,1)
L- 3
DO 20 1-1 ,NPNTS

CALL DRAWC (X(I),Y2(I),L,4)
L-4

20 CONTINUE 
.CALL GRID C8.,5.,1.,1.,4,0)

CALL ABSVEC (1.7,6.,0)
CALL SYMBOQ (6,RTEXT.7)
CALL ABSVEC (8.6,6.7,0)
CALL SYMBOQ C4,TEXT,7)

CALL EXITGR 
'

CALL SCREEN
RETURN
END

90
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